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Abstract

Waters’ variant of the Boneh-Boyen IBE scheme is attractive because of its efficency, appli-
cations, and security attributes, but suffers from a relatively complex proof with poor concrete
security. This is due in part to the proof’s “artificial abort” step, which has then been inherited
by numerous derivative works. It has often been asked whether this step is necessary. We show
that it is not, providing a new proof that eliminates this step. The new proof is not only simpler
than the original one but offers better concrete security for important ranges of the parameters.
As a result, one can securely use smaller groups, resulting in significant efficiency improvements.
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1 Introduction

The importance of identity-based encryption (IBE) as a cryptographic primitive stems from its
widespread deployment and the numerous applications enabled by it. Since the initial work on
providing realizations of IBE [8, 17], improving the efficiency, security, and extensibility of the fun-
damental primitive has consequently received substantial attention from the research community.
A challenging problem has been to arrive at a practical IBE scheme with a tight security reduction
under standard assumptions. (The most attractive target being DBDH without relying on random
oracles.) While a typical approach for progressing towards this goal is proposing new constructions,
in this paper we take another route: improving the concrete security of existing constructions. This
requires providing better proofs of security and analyzing the impact of their tighter reductions.

Why concrete security? Informally speaking, consider an IBE scheme with a security reduction
showing that attacking the scheme in time t with success probability ǫ implies breaking some
believed-to-be hard problem in time t + ω1 with success probability ǫ′ ≥ ǫ/ω2. Tightness of the
reduction refers to the value of ω1 (the overhead in time needed to solve the hard problem using
the scheme attacker) and of ω2 (the amount by which the success probability decreases). Unlike
asymptotic treatments, provably-secure IBE has a history of utilizing concrete security, meaning
specifying ω1 and ω2 explicitly. Concrete-security for IBE started with Boneh and Franklin [8] and
has been continued in subsequent works, e.g. [6, 7, 9, 36, 21, 25] to name just a few.

As Gentry points out [21], concrete security and tight reductions are not just theoretical issues
for IBE, rather they are of utmost practical import: the speed of implementations increases as ω1

and/or ω2 decrease. This is because security guarantees are lost unless the size of groups used
to implement a scheme grow to account for the magnitude of these values. In turn group size
dictates performance: exponentiations in a group whose elements can be represented in r bits
takes roughly O(r3) time. As a concrete example, this means that performing four 160-bit group
exponentiations can be significantly faster than a single 256-bit group exponentiation. In practice
even a factor of two efficiency slow-down is considered significant (let alone a factor of four), so
finding as-tight-as-possible reductions is crucial.

Overview of IBE approaches. All practical IBE systems currently known are based on bilinear
pairings. We can partition the space of such systems along two dimensions, as shown in the left
table of Figure 1. In one dimension is whether one utilizes random oracles or not. In the other is the
flavor of hard problem used, whether it be the basic bilinear Diffie-Hellman (BDH) assumption [8]
or a q-dependent assumption such as q-BDHI [6]. Of note is that Katz and Wang [25], in the
“random oracle/BDH” setting, and Gentry [21], in the “no random oracle/q-dependent setting”,
have essentially solved the problem of finding practical schemes with tight reductions. On the
other hand, finding practical schemes with tight reductions in the “no random oracle/BDH” setting
represents a hard open problem mentioned in numerous works [6, 7, 36, 21]. This last setting turns
out to be attractive for two reasons. First, from a security perspective, it is the most conservative
(and consequently most challenging) with regard to choice of assumptions. Second, schemes thus
far proposed in this setting follow a framework due to Boneh and Boyen [6] (so-called “commutative
blinding”) that naturally supports many valuable extensions: hierarchical IBE [24], attribute-based
IBE [34], direct CCA-secure encryption [10, 26], etc.

Progress in this setting is summarized in the right table of Figure 1. Boneh and Boyen initiated
work here with the BB1 scheme (the first scheme in [6]). They prove it secure under the decisional
BDH (DBDH) assumption, but in the selective-ID attack model of [12] in which adversaries must
commit to a targeted identity before seeing the IBE system’s parameters. Boneh and Boyen show
how to prove full security, but the reduction doing so is exponentially loose (briefly, because it
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q-dependent BDH

RO model SK BF , KW

Standard model BB2 ,Ge BB1 , Wa

Scheme Security Reduction

BB1 selective-ID polynomial

BB1 full exponential

Wa full polynomial

Figure 1: A comparison of practical IBE schemes. BF is the Boneh-Franklin scheme [8]; SK is the
Sakai-Kasahara scheme [35, 16]; KW is the Katz-Wang scheme [25]; BB1 and BB2 are the first and
second Boneh-Boyen schemes from [6]; Wa is Waters’ scheme [36]; and Ge is Gentry’s scheme [21].
(Left) The assumptions (an q-dependent assumption versus bilinear Diffie-Hellman) and model
(random oracles or not) used to prove security of the schemes. (Right) Types of security offered
by standard model BDH-based systems and asymptotic reduction tightness.

requires guessing the hash of the to-be-attacked identity).
Waters’ proposed a variant of BB1 that we’ll call Wa [36]. This variant requires larger public

parameters, but can be proven fully secure with a polynomial reduction to DBDH that does not use
random oracles. The relatively complex security proof relies on a novel “artificial abort” step, that,
while clever, is unintuitive. It also significantly hurts the concrete security and, thereby, efficiency
of the scheme. Many researchers in the community have asked whether artificial aborts can be
dispensed with, but the general consensus seems to have been that the answer is “no” and that the
technique is somehow fundamental to proving security. This folklore assessment (if true) is doubly
unfortunate because Wa, inheriting the flexibility of the Boneh-Boyen framework, has been used
in numerous diverse applications [10, 1, 5, 30, 13, 14, 22, 26]. As observed in [26], some of these
subsequent works offer difficult to understand (let alone verify) proofs, due in large part to their use
of the artificial abort technique in a more-or-less black-box manner. They also inherit its concrete
security overhead.

This paper. Our first contribution is to provide a novel proof of Waters’ variant that completely
eliminates the artificial abort step. The proof, which uses several new techniques and makes
crucial use of code-based games [4], provides an alternate and (we feel) more intuitive and rigorous
approach to proving the security of Wa. Considering the importance of the original proof (due
to its direct or indirect use in [10, 1, 5, 30, 13, 14, 22, 26]), a more readily understood proof is
already a significant contribution. Our reduction (like Waters’) is not tight, but as we see below it
offers better concrete security for many important parameter choices, moving us closer to the goal
of standard model BDH-based schemes with tight reductions. The many Waters’-derived works
[10, 1, 5, 30, 13, 14, 22, 26] inherit the improvements in concrete security. We briefly describe these
derivatives in Appendix A.

We now have the BB1 and Wa schemes, the former with an exponentially-loose reduction and
the latter with now two polynomial reductions each having a complex concrete security formula.
What is the most efficient approach for providing provably-secure DBDH-based IBE? Since we want
to account for the impact of reduction tightness, answering this question requires work. We offer a
framework for computing the concrete efficiency of reductions, adopting techniques from [28, 27, 20].
Efficiency is measured by mapping desired (provable) security levels to requisite group sizes. Not
only does this approach provide a metric for comparing different reductions, it also allows comparing
the resultant bit-operation speed of schemes when each is instantiated in groups of size sufficient
to account for the reduction. Providing such a framework that simultaneously provides simplicity,
accuracy, and fairness (i.e. not biased towards particular schemes/reductions) turned out to be very
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κ ǫ q sBB sW sBR TEnc(sW )/TEnc(sBR)

60 2−20 220 192 192 128 9

70 2−20 220 256 192 128 9

80 2−30 230 256 256 192 5

90 2−30 230 – 256 192 5

100 2−10 210 – 128 192 1/9

100 2−40 240 – 256 192 5

192 2−40 240 – 256 – –

Figure 2: Table showing the security level of the pairing setups required to achieve κ-bits of security
for the BB1 and Wa encryption schemes when adversaries achieve ǫ success probability using q key
extraction queries. Loosely speaking, the security level of the pairing setup is (log p)/2 where p is
the size of the first pairing group. Here sBB , sW , sBR are, respectively, the securities of the pairing
setups for BB1, Wa under Waters’ reduction, and Wa under the new reduction. The final column
represents the (approximate) ratio of encryption times for Wa as specified by the two reductions.
A dash signifies that one needs a pairing setup of security greater than 256.

challenging.
Let us first mention the high-level results, before explaining more. In the end our framework

implies that Waters’ variant usually provides faster standard model encryption (than BB1). Our
new proof provides a better reduction for low to mid range security parameters, while Waters’
reduction is tighter for higher security parameters. The new reduction in fact drastically improves
efficiency in the former category, offering up to 9 times faster encryption for low parameters and 5
times faster encryption for mid-range security levels. Where Waters’ reduction is tighter, we can
continue to choose group size via it; the new reduction never hurts efficiency.

BB1 does better than Wa when identities are short, such as n = 80 bits. We have, how-
ever, focused on providing IBE with arbitrary identity spaces, which provides the most versatility.
Supporting long identities (e.g. email addresses such as john.doe123@anonymous.com) requires
utilizing a collision-resistant hash function to compress identities. In this case, the birthday bound
mandates that the bit length n of hash outputs be double the desired security level, and this affects
the BB1 scheme more due to its reduction being loose by a factor of 2n.

Framework details. We present some results of applying our framework in Figure 2. Let us
explain briefly what the numbers signify and how we derived them. (Details are in Section 4.)
By a setup we mean groups G1,G2,GT admitting a bilinear map e: G1 × G2 → GT . The setup
provides security s (bits) if the best known algorithms to solve the discrete logarithm (DL) problem
take at least 2s time in any of the three groups. We assume (for these estimates but not for the
proof!) that the best algorithm for solving DBDH is solving DL in one of the groups. An important
practical issue in pairings-based cryptography is that setups for arbitrary security are not known.
Accordingly, we will restrict attention to values s = 80, 112, 128, 192, and 256, based on information
from [31, 27, 28, 18, 19]. Figure 6 in Appendix E shows representation sizes of the corresponding
groups. Now we take as our target that the IBE scheme should provide κ bits of security. By this
we mean that any adversary making at most q = 1/ǫ Extract queries and having running time
at most ǫ2κ should have advantage at most ǫ. For each scheme/reduction pair we can then derive
the security s of the underlying pairing setup required to support the desired level of security. See
Figure 2 for BB1 (sBB ), Wa under Waters’ reduction (sW ), and under the new reduction (sBR).
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Other related work and open problems. Recently Hofheinz and Kiltz describe programmable
hash functions [23]. Their main construction uses the same hash function (originally due to Chaum
et al. [15]) as Waters’, and they provide new proof techniques that provide a

√
n (n is the length of

identities) improvement on certain bounds that could be applicable to Wa. But this will only offer
a small concrete security improvement compared to ours. Moreover, their results are asymptotic
and hide (seemingly very large) unknown constants.

As mentioned, providing a scheme based on DBDH that has a tight security reduction (without
random oracles) is a hard open problem, and one that remains after our work. (One reason we
explain this is that we have heard it said that eliminating the artificial abort would solve the open
problem just mentioned, but in fact the two seem to be unrelated.) Finding a tight reduction
for Waters’ (or another BB1-style scheme) is of particular interest since it would immediately give
a hierarchical IBE (HIBE) scheme with security beyond a constant number of levels (the best
currently achievable). From a practical point of view we contribute here, since better concrete
security improves the (constant) number of levels achievable. From a theoretical perspective, this
remains an open problem.

Viewing proofs as qualitative. We measure efficiency of schemes when one sets group size
according to the best-known reduction. However, the fact that a proof implies the need for groups
of certain size to guarantee security of the scheme does not mean the scheme is necessarily insecure
(meaning there is an attack) over smaller groups. It simply means that the proof tells us nothing
about security in these smaller groups. In the context of standards it is sometimes suggested one
view a proof as a qualitative rather than quantitative guarantee, picking group sizes just to resist
the best known attack. Our sense is that this procedure is not viewed as ideal even by its proposers
but rather forced on them by the looseness of reductions. To rectify this gap, one must find tighter
reductions, and our work is a step to this end.

2 Definitions and Background

Notation. We fix pairing parameters GP = (G1,G2,GT , p, e, ψ) where G1, G2, GT are groups of
prime order p; e: G1 × G2 → GT is a non-degenerate, efficiently computable bilinear map; and
ψ: G2 → G1 is an efficiently computable isomorphism [8]. Let Texp(G) denote the time to compute
an exponentiation in a group G. Similarly, let Top(G) denote the time to compute a group operation
in a group G. Let Tψ denote the time to compute ψ. Let G

∗ = G−{1} denote the set of generators
of G where 1 is the identity element of G.

Vectors are written in boldface, e.g. u ∈ Z
n+1
p is a vector of n + 1 values each in Zp. We

denote the ith component of a vector u by u[i]. If S ∈ {0, 1}∗ then |S| denotes its length and S[i]
denotes its ith bit. For integers i, j we let [i .. j] = {i, . . . , j}. The running time of an adversary
A is denoted T(A). We use big-oh notation with the understanding that this hides a small, fixed,
machine-dependent constant.

Games. Our security definitions and proofs use code-based games [4], and so we recall some back-
ground from [4]. A game (look at Figure 3 for examples) has an Initialize procedure, procedures
to respond to adversary oracle queries, and a Finalize procedure. A game G is executed with an
adversary A as follows. First, Initialize executes, and its outputs are the inputs to A. Then A
executes, its oracle queries being answered by the corresponding procedures of G. When A ter-
minates, its output becomes the input to the Finalize procedure. The output of the latter is
called the output of the game, and we let GA ⇒ y denote the event that this game output takes
value y. The boolean flag bad is assumed initialized to false. Games Gi, Gj are identical-until-bad
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procedure Initialize:

g2
$← G

∗
2 ; g1 ← ψ(g2) ; a, b, s

$← Zp ; d
$← {0, 1}

If d = 1 then W
$← e(g1, g2)

abs Else W
$← GT

Ret (g1, g2, g
a
2 , g

b
2, g

s
2,W )

Game DBDHGP

procedure Finalize(d′):
Ret (d′ = d)

procedure Initialize:

(mpk,msk)
$← Pg; c

$← {0, 1}
Ret mpk

procedure Extract(I):
Ret Kg(mpk,msk, I)

Game IND-CPAIBE

procedure LR(I,M0,M1):
Ret Enc(mpk, I,Mc)

procedure Finalize(c′):
Ret (c′ = c)

Figure 3: The DBDH and IND-CPA games.

if their code differs only in statements that follow the setting of bad to true. (For examples, games
G0, G1 of Figure 4 are identical-until-bad, as they differ only in the boxed statements.) We let
“GA

i sets bad” denote the event that game Gi, when executed with adversary A, sets bad to true

(and similarly for “GA
i doesn’t setbad”). It is shown in [4] that if Gi,Gj are identical-until-bad and

A is an adversary, then

Pr
[
GA
i sets bad

]
= Pr

[
GA
j sets bad

]
. (1)

The fundamental lemma of game-playing [4] says that if Gi,Gj are identical-until-bad then for any y

Pr
[
GA
i ⇒ y

]
− Pr

[
GA
j ⇒ y

]
≤ Pr

[
GA
i sets bad

]
.

This lemma is useful when the probability that bad is set is small, but in our setting this probability
will be close to one. We will instead use the following variant:

Lemma 2.1 Let Gi,Gj be identical-until-bad games and let A be an adversary. Then for any y

Pr
[
GA
i ⇒ y ∧GA

i doesn’t set bad
]

= Pr
[
GA
j ⇒ y ∧GA

j doesn’t set bad
]
. �

Lemma 2.1 is implicit in the proof of the fundamental lemma of [4], but for completeness we provide
a proof in Appendix B. Lemma 2.1 was also used in [3, 33].

DBDH problem. The Decisional Bilinear Diffie-Hellman (DBDH) assumption (in the asymmetric
setting) [6] is captured by the game described in Figure 3. We define the dbdh-advantage of an
adversary A against GP = (G1,G2,GT , p, e, ψ) by

Advdbdh
GP (A) = 2 ·Pr

[
DBDHA

GP ⇒ true
]
− 1 . (2)

Identity-based encryption. An identity-based encryption (IBE) scheme is a tuple of algorithms
IBE = (Pg,Kg,Enc,Dec) with associated identity space IdSp ⊆ {0, 1}∗ and message space MsgSp.
The key-issuing center runs the parameter generation algorithm Pg (which takes no input) generates
a master public key mpk and a master secret key msk. The former is publicly distributed. The
key generation algorithm Kg takes as input mpk,msk, I, where I ∈ IdSp, and outputs a secret
key sk for party I. The encryption algorithm Enc takes inputs mpk, I,M , where I ∈ IdSp and
M ∈ MsgSp, and outputs a ciphertext C. The deterministic decryption algorithm Dec takes inputs
mpk, sk, I, C and outputs either ⊥ or a plaintext M . We require the usual consistency, namely
that Dec(mpk, sk, I,Enc(mpk, I,M)) = M with probability one for all I ∈ IdSp and M ∈ MsgSp,

where the probability is over (mpk,msk)
$← Pg ; sk

$← Kg(mpk,msk, I) and the coins used by Enc.
We use the notion of privacy from [8], namely indistinguishability under chosen-plaintext attack
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(ind-cpa). The ind-cpa advantage of an adversary A against an IBE scheme IBE is defined by

Advind-cpa
IBE (A) = 2 ·Pr

[
IND-CPAA

IBE ⇒ true
]
− 1 , (3)

where game IND-CPA is shown in Figure 3. We only allow legitimate adversaries, where adver-
sary A is legitimate if it makes only one query (I∗,M0,M1) to LR, for some I∗ ∈ IdSp and
M0,M1 ∈ MsgSp with |M0| = |M1|, and never queries I∗ to Extract. Here |M | denotes the length
of some canonical string encoding of a message M ∈ MsgSp. (In the schemes we consider messages
are group elements.)

Note that we do allow multiple queries to Extract with the same identity, which is important
because key generation in the schemes we consider are randomized. When we say that A makes
at most q oracle queries or has running time at most t we mean that this is true regardless of A’s
coins and environment, meaning even if its input and the answers to its oracle queries do not come
from IND-CPAIBE.

Waters’ IBE scheme. The Boneh-Boyen IBE scheme is described in Appendix F. The Wa-
ters’ IBE scheme changes the hash function used by BB1. Let n be a positive integer. Define the
hash family H: G

n+1
1 × {0, 1}n → G1 by H(u, I) = u[0]

∏n
i=1 u[i]I[i] for any u ∈ G

n+1
1 and any

I ∈ {0, 1}n. The Waters IBE scheme Wa = (Pg,Kg,Enc,Dec) associated to GP and n has associated
identity space IdSp = {0, 1}n and message space MsgSp = GT , and its first three algorithms are as
follows:

procedure Pg

A1
$← G1 ; g2

$← G
∗
2

b
$← Zp ;B2 ← gb2 ; u

$← G
n+1
1

mpk ← (g2, A1, B2,u)
msk ← Ab1
Ret (mpk,msk)

procedure Kg(mpk,msk, I)

(g2, A1, B2,u)← mpk

K ← msk; r
$← Zp

Ret (K ·H(u, I)r, gr2)

procedure Enc(mpk, I,M)

(g2, A1, B2,u)← mpk

s
$← Zp

Ret (e(A1, B2)
s ·M, gs2, H(u, I)s)

Above, when we write (g2, A1, B2,u) ← mpk we mean mpk is parsed into its constituent parts.
We do not specify the decryption algorithm since it is not relevant to IND-CPA security; it can be
found in [36].

In [36] the scheme is presented in the symmetric setting where G1 = G2. While this makes
notation simpler, we work in the asymmetric setting because it allows pairing parameters for higher
security levels [19].

The hash functions used by Boneh-Boyen and Waters’ schemes have restricted domain. One
can extend to IdSp = {0, 1}∗ by first hashing an identity with a collision-resistant hash function to
derive an n-bit string. (For BB1 this is then encoded in some canonical fashion to a point in Zp.)To
ensure security from birthday attacks, the output length n of the CR function must have bit-length
at least twice that of the desired security parameter.

Waters’ result. Waters [36] proves the security of the Wa scheme associated to GP, n under the
assumption that the DBDH problem in GP is hard. Specifically, let A be an ind-cpa adversary
against Wa that runs in time at most t, makes at most q ∈ [1 .. p/4n] queries to its Extract oracle

and has advantage ǫ = Advind-cpa
Wa (A). Then [36, Theorem 1] presents a dbdh-adversary BWa such

that

Advdbdh
GP (BWa) ≥

ǫ

32(n+ 1)q
, and (4)

T(BWa) = T(A) + Tsim(n, q) + Tabort(ǫ, n, q) (5)
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where

Tsim(n, q) = O (Tψ + (n+ q) ·Texp(G1) + q ·Texp(G2) + qn+ Top(GT )) (6)

Tabort(ǫ, n, q) = O(q2n2ǫ−2 ln(ǫ−1) ln(qn)) . (7)

An important factor in the “looseness” of the reduction is the Tabort(ǫ, n, q) term, which can be
very large, making T(BWa) much more than T(A). This term arises from the “artificial abort”
step. (In [36], the Tabort(ǫ, n, q) term only has a qn factor in place of the q2n2 factor we show.
However, the step requires performing q times up to n operations over the integers modulo 4q for
each of the ℓ = O(qnǫ−2 ln ǫ−1 ln qn) vectors selected, so our term represents the actual cost.)

3 New Proof of Waters’ IBE without Artificial Aborts

We start with some high-level discussion regarding Waters’ original proof and the reason for the
artificial abort. First, one would hope to specify a simulator that, given IND-CPA adversary A
that attacks the IBE scheme using q Extract queries and gains advantage ǫ, solves the DBDH
problem with advantage not drastically worse than ǫ. But A can make Extract queries that force
any conceivable simulator to fail, i.e. have to abort. This means that the advantage against DBDH
is conditioned on A not causing an abort, and so it could be the case that A achieves ǫ advantage
in the normal IND-CPA experiment but almost always causes aborts for the simulator. In this
(hypothetical) case, the simulator could not effectively make use of the adversary, and the proof
fails.

On the other hand, if one can argue that the lower and upper bounds on the probability of A
causing an abort to occur are close (i.e. the case above does not occur), then the proof would go
through. As Waters’ points out [36], the natural simulator (that only aborts when absolutely nec-
essarily) fails to provide such a guarantee. To compensate, Waters’ introduced “artificial aborts”.
At the end of a successful simulation for the IBE adversary, the simulator BWa used by Waters’
generates O(qnǫ−2 ln ǫ−1 ln qn) random vectors. These are used to estimate the probability that
the Extract queries made by A cause an abort during any given execution of the simulator. The
simulator then artificially aborts with some related probability. Intuitively, this forces the proba-
bility of aborting to be independent of A’s particular queries. Waters’ shows that BWa provides the
aforementioned guarantee of close lower and upper bounds and the proof goes through.

The artificial abort step seems strange because BWa is forcing itself to fail even when it appears
to have succeeded. The concrete security also suffers because the running time of the simulator
goes up by Tabort(ǫ, n, q) as shown in (7).

The rest of this section is devoted to proving the next theorem, which establishes the security
of the Waters’ IBE scheme without relying on an artificial abort step.

Theorem 3.1 Fix pairing parameters GP = (G1,G2,GT , p, e, ψ) and an integer n ≥ 1, and let
Wa = (Pg,Kg,Enc,Dec) be the Waters IBE scheme associated to GP and n. Let A be an ind-cpa

adversary against Wa which has advantage ǫ = Advind-cpa
Wa (A) > 0 and makes at most q ∈ [1 .. pǫ/9n]

queries to its Extract oracle. Then there is a dbdh adversary B such that

Advdbdh
GP (B) ≥ ǫ2

27qn+ 3ǫ
, and (8)

T(B) = T(A) + Tsim(n, q) (9)

where Tsim(n, q) was defined by (6). �
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The limitations on q—namely, 1 ≤ q ≤ p/4n in Waters’ result and 1 ≤ q ≤ pǫ/9n in ours—are of
little significance since in practice p ≥ 2160, ǫ ≥ 2−80, and n = 160. For q = 0 there is a separate,
tight reduction. The remainder of this section is devoted to the proof of Theorem 3.1.

Some definitions. Let m = ⌈9q/ǫ⌉ and let X = [−n(m− 1) .. 0]× [0 ..m− 1]× · · · × [0 ..m− 1]
where the number of copies of [0 ..m− 1] is n. For x ∈ X, y ∈ Z

n+1
p and I ∈ {0, 1}n we let

F(x, I) = x[0] +
n∑

i=1

x[i]I[i] and G(y, I) = y[0] +
n∑

i=1

y[i]I[i] mod p . (10)

Note that while the computation of G above is over Zp, that of F is over Z.

Adversary B. Our DBDH adversary B is depicted in Figure 4, where the simulation subroutines
KgS and EncS are specified below. There are two main differences between our adversary and that
of Waters’. The first is that in our case the parameter m is O(q/ǫ) while in Waters’ case it is O(q).
The second difference of course is that Waters’ adversary BWa, unlike ours, includes the artificial
abort step. Once A has terminated, this step selects l = O(qnǫ−2 ln(ǫ−1) ln(qn)) new random
vectors x1, . . . ,xl from X. Letting I1, . . . , Iq denote the identities queried by A to its Extract
oracle and I0 the identity queried to the LR oracle, it then evaluates F(xi, Ij) for all 1 ≤ i ≤ l
and 0 ≤ j ≤ q, and uses these values to approximate the probability that bad is set. It then
aborts with some related probability. Each computation of F takes O(n) time, and there are q such
computations for each of the l samples, accounting for the estimate of (7). In addition there are
some minor differences between the adversaries. For example, x is chosen differently. (In [36] it is
taken from [0 ..m− 1]n+1, and an additional value k ∈ [0 .. n], which we do not have, is mixed in.)

We note that our adversary in fact never aborts. Sometimes, it is clearly returning incorrect
answers (namely ⊥) to A’s queries. Adversary A will recognize this, and all bets are off as to what
it will do. Nonetheless, B continues the execution of A. Our analysis will show that B has the
claimed properties regardless.

An analysis of the running time of B, justifying equations (6) and (9), is given in Appendix G.

Simulation subroutines. We define the subroutines that B utilizes to answer Extract and LR
queries. We say that (g1, g2, A2, A1, B2, B1,x,y,u, S,W ) are simulation parameters if: g2 ∈ G

∗
2;

g1 = ψ(g2) ∈ G
∗
1; A2 ∈ G2; A1 = ψ(A2) ∈ G1; B2 ∈ G2; B1 = ψ(B2) ∈ G1; x ∈ X; y ∈ Z

n+1
p ;

u[j] = B
x[j]
1 g

y[j]
1 for j ∈ [0 .. n]; S ∈ G2; and W ∈ GT . We define the following procedures:

procedure KgS(g1, g2, A2, A1, B1,x,y, I)

r
$← Zp; w ← F(x, I)−1 mod p

L1 ← B
F(x,I)·r
1 g

G(y,I)·r
1 A

−G(y,I)w
1

L2 ← gr2A
−w
2

Ret (L1, L2)

procedure EncS(S,W,M,y, I)

C1 ←W ·M
C2 ← S ; C3 ← ψ(S)G(y,I)

Ret (C1, C2, C3)

Note that if F(x, I) 6= 0 then F(x, I) 6≡ 0 (mod p) so the quantity w computed by KgS is well-defined
whenever F(x, I) 6= 0. This is because the absolute value of F(x, I) is at most

n(m− 1) = n

(⌈
9q

ǫ

⌉

− 1

)

<
9nq

ǫ
≤ p , (11)

the last because of the restriction on q in the theorem statement. The next lemma captures two
facts about the simulation subroutines, which we will use in our analysis.

Lemma 3.2 Let (g1, g2, A2, A1, B2, B1,x,y,u, S,W ) be simulation parameters. Let I ∈ {0, 1}n.
Let mpk = (g2, A1, B2,u). Let b be the discrete log of B1 to base g1 and let msk = Ab1. Let s be
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Adversary B(g1, g2, A2, B2, S,W ):

c
$← {0, 1} ;A1 ← ψ(A2) ;B1 ← ψ(B2)

For j = 0, . . . , n do

y[j]
$← Zp

If j = 0 then x[j]
$← [−n(m− 1) .. 0]

Else x[j]
$← [0 ..m− 1]

u[j]← B
x[j]
1 g

y[j]
1

mpk ← (g2, A1, B2,u)
Run A(mpk), answering queries by

query Extract(I):
sk(I)← ⊥
If F(x, I) = 0 then bad← true

Else sk(I)
$← KgS(g1, g2, A2, A1, B1,x,y, I)

Ret sk(I)

query LR(I,M0,M1):
C ← ⊥
If F(x, I) 6= 0 then bad← true

Else C ← EncS(S,W,Mc,y, I)
Ret C

A finishes, returning bit c′

If bad = true then c′
$← {0, 1}

If c = c′ then Ret 1 else Ret 0

procedure Initialize: Games G0, G1, G2

000 g2
$← G

∗
2 ; g1 ← ψ(g2) ; a, b, s

$← Zp

001 A2 ← ga2 ;B2 ← gb2 ; S ← gs2 ; c, d
$← {0, 1}

002 A1 ← ψ(A2) ;B1 ← ψ(B2) ;K ← Ab1
003 For j = 0, . . . , n do

004 y[j]
$← Zp

005 If j = 0 then x[j]
$← [−n(m− 1) .. 0]

006 Else x[j]
$← [0 ..m− 1]

007 u[j]← B
x[j]
1 g

y[j]
1

008 mpk ← (g2, A1, B2,u)
009 If d = 1 then W ← e(A1, B2)

s

010 Else W
$← GT

011 Ret mpk

procedure Extract(I): Games G0, G1

020 sk(I)← ⊥
021 If F(x, I) = 0 then
022 bad← true

023 r
$← Zp ; sk(I)← (K ·H(u, I)r, gr2)

024 Else sk(I)
$← KgS(g1, g2, A2, A1, B1,x,y, I)

025 Ret sk(I)

procedure LR(I,M0,M1): Games G0, G1

030 C ← ⊥
031 If F(x, I) 6= 0 then
032 bad← true ; C ← (W ·Mc, S,H(u, I)s)

033 Else C ← EncS(S,W,Mc,y, I)
034 Ret C

procedure Finalize(c′): Games G0, G1

040 c′′ ← c′

041 If bad = true then c′′
$← {0, 1} ; c′′ ← c′

042 If c = c′′ then Ret 1 else Ret 0

Figure 4: Adversary B and the start of the game sequence. Game G1 includes the boxed statements
in procedures Extract, LR, and Finalize while G0 does not.

the discrete log of S to base g2. Then if F(x, I) 6= 0 the outputs of KgS(g1, g2, A2, A1, B1,x,y, I)
and Kg(mpk,msk, I) are identically distributed. Also if F(x, I) = 0 then for any M ∈ MsgSp, the
output of EncS(S,W,M,y, I) is (W ·M,S,H(u, I)s). �

The proof of Lemma 3.2, which follows arguments given in [36], is given in Appendix C.

Overview. Consider executing B in game DBDHGP. If d = 1, then Lemma 3.2 implies that
adversary B correctly answers oracle queries as long as it does not set bad. On the other hand if
d = 0 then B’s output is a random bit. Attempting to conclude by showing that bad is seldom
set fails, however, because in fact it will be set with probability close to 1. Alternatively, if one
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procedure Extract(I): Game G2

220 If F(x, I) = 0 then bad← true

221 r
$← Zp ; Ret sk(I)← (K ·H(u, I)r, gr2)

procedure LR(I,M0,M1): Game G2

230 If F(x, I) 6= 0 then bad← true

231 Ret C ← (W ·Mc, S,H(u, I)s)

procedure Finalize(c′): Game G2

240 If c = c′ then Ret 1 else Ret 0

procedure Initialize: Game G3

300 A1
$← G1 ; g2

$← G
∗
2 ; b, s

$← Zp ; cnt← 0

301 B2 ← gb2 ; S ← gs2 ; c, d
$← {0, 1} ;K ← Ab1

302 For j = 0, . . . , n do

303 z[j]
$← Zp ; u[j]← g

z[j]
1

304 If j = 0 then x[j]
$← [−n(m− 1) .. 0]

305 Else x[j]
$← [0 ..m− 1]

306 y[j]← z[j]− b · x[j] mod p
307 mpk ← (g2, A1, B2,u)
308 If d = 1 then W ← e(A1, B2)

s

309 Else W
$← GT

310 Ret mpk

procedure Finalize(c′): Game G3

340 For j = 1, . . . , cnt do
341 If F(x, Ij) = 0 then bad← true

342 If F(x, I0) 6= 0 then bad← true

343 If c = c′ then Ret 1 else Ret 0

procedure Initialize: Game G4

400 A1
$← G1 ; g2

$← G
∗
2 ; b, s

$← Zp ; i← 0

401 B2 ← gb2 ; S ← gs2 ; c, d
$← {0, 1} ;K ← Ab1

402 For j = 0, . . . , n do

403 z[j]
$← Zp ; u[j]← gz[j]

404 mpk ← (g,A1, B2,u)
405 If d = 1 then W ← e(A1, B2)

s

406 Else W
$← GT

407 Ret mpk

procedure Extract(I): Games G3, G4

320 cnt← cnt+ 1 ; Icnt ← I

321 r
$← Zp ; Ret sk(I)← (K ·H(u, I)r, gr2)

procedure LR(I,M0,M1): Games G3, G4

330 I0 ← I
331 Ret C ← (W ·Mc, S,H(u, I)s)

procedure Finalize(c′): Game G4

440 For j = 0, . . . , n do

441 If j = 0 then x[j]
$← [−n(m− 1) .. 0]

442 Else x[j]
$← [0 ..m− 1]

443 For j = 1, . . . , cnt do
444 If F(x, Ij) = 0 then bad← true

445 If F(x, I0) 6= 0 then bad← true

446 If c = c′ then Ret 1 else Ret 0

Figure 5: Continuation of the game sequence. Games G2 and G1 (see Figure 4) have identical
Initialize procedures. Games G3 and G4 have identical Extract and LR procedures.

could show that the setting of bad is independent of the correctness of B’s output, then one could
conclude by multiplying the probabilities of these events. The difficulty in the proof is that this
independence does not hold. Waters’ artificial abort step is one way to compensate. However, we
have dropped this (expensive) step and propose nonetheless to push an argument through. We will
first use the game sequence G0–G4 to arrive at a game where the choice of x is independent of the
game output. The subtle point is that this still does not provide independence between setting bad

and the game output, because the identities chosen by A for its oracle queries affect both events.
The first step in addressing this is a conditioning argument based on Lemma 3.4 which allows us to
express a lower bound on the advantage of B in terms of probabilities γ(I) associated to different
queried identities. The crucial insight is that Lemma 3.5 gives upper and lower bounds on these
probabilities that are very close, specifically within a factor of 1− ǫ of each other, due to our choice
of m = O(q/ǫ) rather than merely the m = O(q) of [36]. Using this allows us to conclude easily.

The game playing sequence. Assume without loss of generality that A always makes exactly q
queries to its Extract oracle rather than at most q. The proof starts using a sequence of games
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G0−G4 to move from B running in the DBDH experiment to a game G4 (shown in Figure 5) that
is essentially the IND-CPA experiment, though with some additional bookkeeping. This transition
is critical since it moves to a setting where the choice of x is clearly independent of A’s choices.
We capture this game playing sequence via the following lemma. Let GD4 denote the event that
GA

4 does not set bad.

Lemma 3.3 Advdbdh
GP (B) = 2 · Pr

[
GA

4 ⇒ d ∧ GD4

]
− Pr [GD4 ] �

Proof: Figures 4 and 5 compactly describe four games showing next to each procedure the games
in which it appears. For example, the Initialize procedure of Figure 4 is common to games G0,
G1, and G2. Let BDi denote the event that GA

i sets bad and GDi the event that GA
i does not

set bad, for 0 ≤ i ≤ 4. The Initialize procedure of game G0 includes the code of the Initialize
procedure of game DBDHGP. Game G0 and adversary B answer A’s oracle queries in the same way
(remember that G0 omits the boxed statements). The output of G0 (as computed by its Finalize
procedure) is the same as B’s. (The code is written differently but is equivalent.) The bit d in G0

represents the challenge bit of the same name in game DBDHGP. Thus we have,

Pr
[
DBDHB

GP ⇒ true
]

= Pr
[
GA

0 ⇒ d
]

= Pr
[
GA

0 ⇒ d | BD0

]
Pr [BD0 ] + Pr

[
GA

0 ⇒ d ∧ GD0

]
.

If GA
0 sets bad then line 041 ensures that c′′ is random. Line 042 then ensures that the output

of G0 is random as well and thus equals d with probability 1/2. This means that the conditional
probability above is 1/2 and hence we have

Pr
[
DBDHB

GP ⇒ true
]

=
1

2
· Pr [BD0 ] + Pr

[
GA

0 ⇒ d ∧ GD0

]
. (12)

The boxed statements of lines 023 and 032 of G1 are “corrections” which ensure that no oracle
query ever returns ⊥, even in the case that a subroutine would fail, meaning when bad is set. (Note
this code uses the secret key K and the discrete log s of S, neither of which were given to B or used
by G0 to respond to oracle queries.) But G0,G1 are identical-until-bad, so by (1) and Lemma 2.1
we have

Pr [BD0 ] = Pr [BD1 ] and Pr
[
GA

0 ⇒ d ∧ GD0

]
= Pr

[
GA

1 ⇒ d ∧ GD1

]
. (13)

Let us now consider how G1 relates to G2. Lemma 3.2 tells us that KgS at line 024 and the code of
line 023 compute the same value sk(I). Lemma 3.2 also tells us that EncS at line 033 and the code
of line 032 compute the same tuple C. (Recall A is allowed only one LR query.) Thus, G1 always
answers oracle queries in the same manner, meaning one can equivalently define its Extract and
LR procedures as in game G2. Since the boxed code of line 041 is included in G1, we always have
c′′ = c′ and hence the output of the game is simply 1 if c = c′ and 0 otherwise. This is how G2

computes its output at 240. It follows that

Pr [BD1 ] = Pr [BD2 ] and Pr
[
GA

1 ⇒ d ∧ GD1

]
= Pr

[
GA

2 ⇒ d ∧ GD2

]
. (14)

The Extract and LR procedures of G2 may set bad but do not use it. Throwing in the bookkeeping
of lines 300, 320, and 330, we can thus move the code setting bad into lines 340–342 in G3. We
then observe that lines 004–007 of G2 can equivalently be written as lines 303–306 of G3. Finally,
game G2 no longer uses g1, A2, and B1. Thus we re-write lines 000–002 of G2 as 300–301 of G3.
The distribution of A1 is equivalent in both games. At this point we have

Pr [BD2 ] = Pr [BD3 ] and Pr
[
GA

2 ⇒ d ∧ GD2

]
= Pr

[
GA

3 ⇒ d ∧ GD3

]
. (15)

But now x is not used in G3 until the Finalize procedure and y is not used at all. Game G4 delays
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picking x until Finalize and drops y, but otherwise its code matches that of G3. Thus we have

Pr [BD3 ] = Pr [BD4 ] and Pr
[
GA

3 ⇒ d ∧ GD3

]
= Pr

[
GA

4 ⇒ d ∧ GD4

]
. (16)

Using equations (2), (12), (13), (14), (15), and (16) we have

Advdbdh
GP (B) = 2 · Pr

[
DBDHB

GP ⇒ true
]
− 1

= Pr [BD4 ] + 2 · Pr
[
GA

4 ⇒ d ∧ GD4

]
− 1

= 2 · Pr
[
GA

4 ⇒ d ∧ GD4

]
− Pr [GD4 ] . (17)

This completes the proof of Lemma 3.3.

We now reach a subtle point. Consider the following argument: “The event GD4 depends only
on x, which is chosen at lines 440–442 after the adversary and game outputs are determined. So
GD4 is independent of the event that GA

4 ⇒ d.” If we buy this, the probability of the conjunct in
Lemma 3.3 becomes the product of the probability of the constituent events, and it is quite easy to
conclude. However, the problem is that the argument in quotes above is wrong. The reason is that
GD4 also depends on I0, . . . , Iq and these are adversary queries whose values are not independent
of the game output. Waters’ compensates for this via the artificial abort step, but we do not have
this step in B and propose to complete the analysis anyway.

Conditional independence lemma. Let

ID = {(I0, . . . , Iq) ∈ ({0, 1}n)q+1 : ∀i ∈ [1 .. q] (I0 6= Ii)} .
For (I0, . . . , Iq) ∈ ID let

γ(I0, . . . , Iq) = Pr [F(x, I0) = 0 ∧ F(x, I1) 6= 0 ∧ · · · ∧ F(x, Iq) 6= 0 ]

where the probability is taken over x
$← X. This is the probability of GD4 under a particular

sequence of queried identities I0, . . . , Iq. (We stress that here we first fix I0, . . . , Iq and then choose
x at random.) If γ(I0, . . . , Iq) were the same for all (I0, . . . , Iq) ∈ ID then the problem discussed
above would be resolved. The difficulty is that γ(I0, . . . , Iq) varies with I0, . . . , Iq. Our next lemma
is the main tool to resolve the independence problem. Roughly it says that if we consider the
conditional space obtained by conditioning on a particular sequence I0, . . . , Iq of queried identities,
then independence does hold. To formalize this, let Q(I) be the event that the execution of G4

with A results in the identities I0, . . . , Iq being queried by A, where I = (I0, . . . , Iq). Then:

Lemma 3.4 For any I ∈ ID,

Pr
[
GA

4 ⇒ d ∧ GD4 ∧ Q(I)
]

= γ(I) ·Pr
[
GA

4 ⇒ d ∧ Q(I)
]

(18)

Pr [GD4 ∧ Q(I) ] = γ(I) ·Pr [Q(I) ] � (19)

Proof: The set of coin tosses underlying the execution of G4 with A can be viewed as a cross
product Ω = Ω′ × X, meaning each member ω of Ω is a pair ω = (ω′,x) where x is the choice
made at lines 440–442 and ω′ is all the rest of the game and adversary coins. For any I ∈ ID let
Ω′(I) be the set of all ω ∈ Ω′ such that the execution with ω produces I as the sequence of queried
identities. (Which I is produced depends only on ω′ since x is chosen after A has terminated.) Let
Ω′

out be the set of all ω ∈ Ω′ on which the execution outputs d. (Again, this is determined only by
ω′ and not x.) Let Xgd(I) be the set of all x ∈ X such that

F(x, I0) = 0 ∧ F(x, Ii) 6= 0 ∧ · · · ∧ F(x, Iq) 6= 0 ,
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where I = (I0, . . . , Iq). Now observe that the set of coins leading to GA
4 ⇒ d is Ω′

out ×X and the
set of coins leading to GD4 ∧ Q(I) is Ω′(I)×Xgd(I). So

Pr
[
GA

4 ⇒ d ∧ GD4 ∧ Q(I)
]

=
|(Ω′

out ×X) ∩ (Ω′(I)×Xgd(I))|
|Ω′ ×X|

=
|(Ω′

out ∩ Ω′(I))×Xgd(I)|
|Ω′ ×X| =

|Ω′
out ∩ Ω′(I)| · |Xgd(I)|

|Ω′| · |X|

=
|Ω′

out ∩ Ω′(I)| · |X|
|Ω′| · |X| · |Xgd(I)|

|X| =
|(Ω′

out ∩ Ω′(I))×X|
|Ω′ ×X| · |Xgd(I)|

|X| .

But the first term above is Pr
[
GA

4 ⇒ d ∧ Q(I)
]

while the second is γ(I), establishing (18). For
(19) we similarly have

Pr [GD4 ∧ Q(I) ] =
|Ω′(I)×Xgd(I)|
|Ω′ ×X| =

|Ω′(I)|
|Ω′| ·

|Xgd(I)|
|X|

=
|Ω′(I)| · |X|
|Ω′| · |X| ·

|Xgd(I)|
|X| =

|Ω′(I)×X|
|Ω′ ×X| ·

|Xgd(I)|
|X| .

But the final terms above are Pr [Q(I) ] and γ(I), respectively, establishing (19).

Analysis continued. Let γmin be the smallest value of γ(I0, . . . , Iq) taken over all (I0, . . . , Iq) ∈
ID. Let γmax be the largest value of γ(I0, . . . , Iq) taken over all (I0, . . . , Iq) ∈ ID. Using Lemma 3.3
we have that

Advdbdh
GP (B) = 2 · Pr

[
GA

4 ⇒ d ∧ GD4

]
− Pr [GD4 ]

=
∑

I∈ID

2 · Pr
[
GA

4 ⇒ d ∧ GD4 ∧ Q(I)
]
−
∑

I∈ID

Pr [GD4 ∧ Q(I) ]

and applying Lemma 3.4:

Advdbdh
GP (B) =

∑

I∈ID

2γ(I) ·Pr
[
GA

4 ⇒ d ∧ Q(I)
]
−
∑

I∈ID

γ(I) ·Pr [Q(I) ]

≥ γmin

∑

I∈ID

2 ·Pr
[
GA

4 ⇒ d ∧ Q(I)
]

︸ ︷︷ ︸

=2·Pr[GA
4 ⇒d ]

−γmax

∑

I∈ID

Pr [Q(I) ]

︸ ︷︷ ︸

=1

≥ 2γmin ·Pr
[
GA

4 ⇒ d
]
− γmax . (20)

Now

Pr
[
GA

4 ⇒ d
]

= Pr
[
GA

4 ⇒ 1 | d = 1
]
Pr [ d = 1 ] + Pr

[
GA

4 ⇒ 0 | d = 0
]
Pr [ d = 0 ]

=
1

2
· Pr

[
GA

4 ⇒ 1 | d = 1
]
+

1

2
· Pr

[
GA

4 ⇒ 0 | d = 0
]

=
1

2
·
(

1

2
+

1

2
·Advind-cpa

Wa (A)

)

+
1

2
· 1
2

(21)

=
1

4
·Advind-cpa

Wa (A) +
1

2
(22)
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where we justify (21) as follows. In the case that d = 0, the value W is uniformly distributed
over GT and hence line 331 gives A no information about the bit c. So the probability that c = c′

at line 446 is 1/2. On the other hand if d = 1 then G4 implements the IND-CPAWa game, so

2 ·Pr
[
GA

4 ⇒ 1 | d = 1
]
− 1 = Advind-cpa

Wa (A) by (3). We substitute (22) into (20) and get

Advdbdh
GP (B) ≥ 2γmin

(
1

4
Advind-cpa

Wa (A) +
1

2

)

− γmax

=
γmin

2
Advind-cpa

Wa (A) + (γmin − γmax) . (23)

To finish the proof, we use the following:

Lemma 3.5
1

n(m− 1) + 1

(

1− q

m

)

≤ γmin ≤ γmax ≤
1

n(m− 1) + 1
�

The proof of Lemma 3.5, based on ideas in [36], is given in Appendix D. Let α = 1/(n(m− 1)+1).

Recall that m = ⌈9q/ǫ⌉ ≥ 9q/ǫ where ǫ = Advind-cpa
Wa (A). Then, applying Lemma 3.5 to (23) we

get

Advdbdh
GP (B) ≥ α

2

(

1− q

m

)

ǫ+ α
(

1− q

m

)

− α = α

[
1

2

(

1− q

m

)

ǫ− q

m

]

≥ α

[
1

2

(

1− qǫ

9q

)

ǫ− qǫ

9q

]

=
αǫ

18
(7− ǫ)

≥ αǫ

3
. (24)

Inequality (24) is justified by the fact that ǫ ≤ 1. Using the fact that m = ⌈9q/ǫ⌉ ≤ 9q/ǫ + 1 and
substituting in for α, we complete the derivation of our lower bound for B:

Advdbdh
GP (B) ≥ ǫ

3
· 1

n(m− 1) + 1
≥ ǫ

3
· 1

n(9q/ǫ) + 1
=

ǫ2

27qn+ 3ǫ
.

4 Measuring Concrete Security

Work factors. For any adversary A running in time T(A) and gaining advantage ǫ we define the
work factor of A to be WF(A) = T(A)/ǫ. The ratio of A’s running time to its advantage provides
a measure of the efficiency of the adversary. Generally speaking, to resist an adversary with work
factor WF(A), a scheme should have its security parameter (bits of security) be κ ≥ log WF(A).
Note that for a particular value of ǫ, this means a run time of T(A) = ǫ2κ. Work factors were
previously used in [20].

We use work factors to help tame the complexity of comparing reductions. Here we consider
Waters’ and our new reduction for Wa; a treatment of BB1 is given in Appendix F. Consider
an ind-cpa adversary A against Wa that makes q Extract queries, runs in time T(A), and has

advantage ǫ = Advind-cpa
Wa (A). We can relate the work factor of A to the work factors of Waters’

adversary BWa and our new reduction’s adversary B. Namely, using Equations (4) and (5), we have
that

WF(BWa) =
T(A) + Tsim(n, q) + Tabort(ǫ, n, q)

ǫ/(32(n+ 1)q)

= 32q(n+ 1)
(
WF(A) + Tsim(n, q) ·ǫ−1 + Tabort(ǫ, n, q) ·ǫ−1

)
(25)
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Representation Size (in bits)
s log p ρ k G1 G2 GT

80 160 1 10 160 1600 1600

112 224 1 10 224 2240 2240

128 256 1 12 256 3072 3072

192 384 2 10 768 7680 7680

256 512 2 15 1024 15360 15360

Figure 6: Group sizes for some pairing instantiations. Each value of s represents a common security
level for pairings. Here p is the common order of the groups, i.e. |G1| = |G2| = |GT | = p. The
value ρ determines the size of the representation of an element in G1, where the size (in bits) is
ρ · log p. Finally, k is the embedding degree and determines the size of the representation of G2 and
GT , where the size (in bits) is ρ log pk.

and using Equations(8) and (9) we have that

WF(B) =
T(A) + Tsim(n, q)

ǫ2/(27nq + 3ǫ)
=

(27nq + 3ǫ)

ǫ
·
(
WF(A) + Tsim(n, q) ·ǫ−1

)
. (26)

A security proof is only meaningful when the adversary it constructs has work factor less than
that of the best known attack. Otherwise, the proof does not guarantee that finding a successful
attacker against the scheme contradicts our confidence in the hardness of the underlying problem.
Pollard’s rho algorithm for finding discrete logs in G1 is the best known attack against DBDH.
(Our instantiations will ensure that finding discrete logs in GT is no easier than in G1.) The work
factor of Pollard’s algorithm ends up being

WF(P) =
T(P)

ǫp
=

(0.88
√
p ·Top(G1))

2

T(P)
≥ 0.88

√
p ·Top(G1) .

where the last inequality is because P achieves no more advantage after running for time 0.88
√
p ·

Top(G1). We therefore compare the efficiencies of the two reductions based on their ability to satisfy

WF(BWa) ≤WF(P) or WF(B) ≤WF(P)

for various values of WF(A), ǫ, q, and concrete pairing parameters.

Pairing instantiations. In Appendix E we discuss the (complex) topic of instantiating pairings
for various security levels. Since not all security levels have efficient instantiations [19, 18], we limit
our attention to several pairing setups that correspond to the security levels indicated (for private
and public-key cryptography) by the NIST key schedule [31]. These setups and their corresponding
instantiation sizes are listed in Figure 6.

Comparing the reductions. We are now ready to perform the comparison. Let κ = log WF(A).
The tables in Figure 7 show the pairing setup sW needed to ensure WF(BWa) ≤WF(P) is satisfied
and the pairing setup sN needed to ensure WF(B) ≤WF(P) is satisfied, for the indicated values
of κ, ǫ, and q. Shown also is the pairing setup required for BB1. Note that while one can evaluate
the equations everywhere, some combinations of κ, ǫ, and q don’t actually make sense, for example
−ǫ+ q ≥ κ implies that the adversary spends all its time making oracle queries. We have marked
such combinations with a ∗.

Waters’ reduction provides better or equal efficiency for some choices of parameters as compared
to the new reduction. This occurs for relatively large values of ǫ, small values of q, and/or very
high values of κ. Moreover, if ǫ and q are held constant, then Waters’ reduction has a constant
level more efficiency as κ→∞. When choosing pairing parameters, one can use the minimum of
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the two setups suggested by the reductions.
We can calculate the approximate (using conventions discussed in Appendix E) efficiency dif-

ference for encryption when Wa is instantiated with pairing setup sW versus sN using the following
ratio

Texp(GT ) + Top(GT ) + Texp(G2) + Texp(G1)

Texp(G′
T ) + Top(G′

T ) + Texp(G′
2) + Texp(G′

1)
.

Here GP = (G1,G2,GT , p, e, ψ) are the pairings as instantiated under setup sW and GP′ = (G′
1,G

′
2,

G
′
T , p

′, e′, ψ′) are the pairings as instantiated under setup sN . Figure 2 in the introduction shows
this ratio for some sW , sN pairs.
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A Derivatives of Waters’ IBE

A large body of research [10, 1, 5, 26, 30, 13, 14, 22] utilizes Waters’ scheme. Recall that Waters’
already proposed a heirarchical IBE scheme based on Wa in [36], and subsequently there have
been numerous derivative works. All use the artificial abort, either due to a black-box reduction
to Waters’ (H)IBE or as an explicit step in a direct proof. Our new proof technique immediately
benefits those schemes that utilize Waters’ scheme directly (i.e. in a black-box manner). For the
rest, we believe that our techniques can be applied but have not checked the details.

• Naccache [30] and Chatterjee and Sarkar [13, 14] independently and concurrently introduced a
space-time trade-off for Wa that involves modifying the hash function utilized from H(u, I) =
u[0]

∏n
i=1 u[i]I[i] for u ∈ G

n+1
1 to H ′(u, I) = u[0]

∏ℓ
i=1 u[i]I[i] where u ∈ G

ℓ+1
1 and each I[i] is

now an n/ℓ-bit string. For appropriate choice of ℓ this will significantly reduce the number of
elements included in the master public key. However the new choice of hash function impacts
the reduction tightness, and since their proof includes just minor changes to Waters’, our new
reduction will increase the efficiency of this time/space trade-off for various security levels.

• In [10] BB1- and Wa-based constructions of CCA-secure public-key encryption schemes and their
proofs for the Wa case directly utilize artificial aborts.
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• Kiltz and Galindo [26] propose a construction of CCA-secure identity-based key encapsulation
that is a modified version of Wa.

• Wildcard IBE [1, 5] is a generalization of heirarchical IBE that allows encryption to identities
that include wildcards, e.g. “*@anonymous.com”. In [1] a wildcard IBE scheme is proposed
that utilizes the Waters HIBE scheme, and the proof is black-box to it. In [5] a wildcard
identity-based KEM is produced based (in a non-black-box manner) on Waters’ IBE.

• Wicked IBE [2] allows generation of private keys for wildcard identities. These private keys can
then be used to generate derivative keys that replace the wildcards with any concrete identity
string. They suggest using the Waters’ HIBE scheme to achieve full security in their setting.

• Blind IBE, as introduced by Green and Hohenberger [22], enables the “trusted” master key gen-
erator to generate a private key for an identity without learning anything about the identity. To
prove a Waters’-based blind IBE scheme secure they utilize the Naccache proof [30] (mentioned
above). They utilize blind IBE schemes to build efficient and fully-simulatable oblivious transfer
protocols based on the assumptions inherited from the BDH-based IBE schemes used.

B Proof of Lemma 2.1

We prove the lemma utilizing a coin-counting argument, following the approach of [4, Lemma 1].
For a pair of games G and H and an advsersary A we assume that the number of random selection

assignments s
$← S is less than or equal to some number b ≥ 0 and each set S sampled from is of

size less than or equal to d > 0 (for simplicity we disallow empty sets). Then we define the coins
for (G,H,A) to be the set C = [0 .. d!]b. Using coins c = (c1, . . . , cb) ∈ C, the ith random selection

statement s
$← S = {s1, s2, . . . , sm} for m < d in GA (equivalently HA) is executed by assigning

to s the value sci mod m. (Note that there is no distinction between random assignment statements
in the game or the adversary, they are treated the same.) Since m divides d, then selecting c
uniformly ensures that each random assignment statement returns an indendently and uniformly
chosen element from the set. We write GA(c) to denote running GA on the particular choice of
coins c.

Let C be the set of coins for (G,H,A) where G and H are identical-until-bad games and A is an
adverary. Let GDG (resp. GDH) be the event that bad is not set in game G (resp. H). Let CG0 =
{c ∈ C : GA(c)⇒ y} and CG1 = C\CG0. Let CGgood = {c ∈ C : GA(c) does not set bad}. Let

CGgood
k = CGgood∩CGk for k ∈ [0, 1]. Define CH0, CH1, CH

good, and CHgood
k in the natural way.

Because G and H are identical-until-bad we have that CGgood
1 = CHgood

1 . This is true because

any vector c ∈ CGgood
1 does not cause bad to be set, thereby only code that is common with H is

executed. So if GA(c)⇒ y then HA(c)⇒ y, making c ∈ CHgood
1 . A similar argument works in the

other direction. So we have that

Pr
[
GA ⇒ 1 ∧ GDG

]
=
|CGgood

1 |
|C| =

|CHgood
1 |
|C| = Pr

[
HA ⇒ 1 ∧ GDH

]
.

C Proof of Lemma 3.2

As per the lemma statement, let (g1, g2, A2, A1, B2, B1,x,y,u, S,W ) be simulation parameters. For
the first claim, we recall that x ∈ X ensures that F(x, I) ∈ [−n(m− 1) . . . n(m− 1)]. But the fact
that m = ⌈9q/ǫ⌉ and the assumption that q ≤ pǫ/9n together imply that n(m − 1) < p. This
implies that if F(x, I) 6= 0 then F(x, I) mod p 6= 0 as well. Thus w = F(x, I)−1 is well-defined. Let
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a and b be the discrete logs (base g1) of A1 and B1, respectively. Define the function f : Zp → Zp

by f(r) = r − wa mod p for all r ∈ Zp. Now we claim that for any r ∈ Zp we have

Ab1H(u, I)f(r) = B
F(x,I)·r
1 g

G(y,I)·r
1 A

−G(y,I)·w
1 (27)

g
f(r)
2 = gr2A

−w
2 (28)

In other words, the output of KgS(g1, g2, A2, A1, B1,x,y, I) when r is the underlying randomness
equals the output of Kg(mpk,msk, I) when f(r) is the underlying randomness. But f is a per-
mutation over Zp, so if r is uniformly distributed, so is f(r). This proves that the outputs of
Kg(mpk,msk, I) and KgS(g1, g2, A2, A1, B1,x,y, I) are identically distributed as claimed. Let us
now verify equations (27) and (28). We have:

Ab1H(u, I)f(r) = Ab1 ·
(

u[0] ·
n∏

i=1

u[i]I[i]

)r−w·a

= gab1 ·
(

B
x[0]
1 g

y[0]
1 ·

n∏

i=1

B
x[i]I[i]
1 g

y[i]I[i]
1

)r−w·a

= Ba
1 ·
(

B
F(x,I)
1 · gG(y,I)

1

)r−w·a

= Ba
1 ·B

F(x,I)·r
1 ·B−a

1 · gG(y,I)r
1 · g−aG(y,I)·w

1

= B
F(x,I)·r
1 · gG(y,I)r

1 ·A−G(y,I)·w
1 .

We know that g1 = ψ(g2) and A1 = ψ(A2) = ga1 . This means that A2 = ga2 . So

g
f(r)
2 = gr−w·a2 = gr2A

−w
2 ,

which completes the proof of the first part. For the second part, we assume that F(x, I) = 0 and
let (C1, C2, C3)← EncS(S,W,M,y, I). Let s be the discrete log of S to base g2. Then C1 = W ·M ;
C2 = S; and using that ψ(S) = gs1 we have

C3 = ψ(S)G(y,I) = (gs1)
G(y,I) =

(

g
G(y,I)
1

)s

=
(

B0
1g

G(y,I)
1

)s

=
(

B
F(x,I)
1 g

G(y,I)
1

)s

= H(u, I)s .

Thus (C1, C2, C3) is exactly (W ·M,S,H(u, I)s).

D Proof of Lemma 3.5

Fix an arbitrary (I0, . . . , Iq) ∈ ID. We will show that

1

n(m− 1) + 1

(

1− q

m

)

≤ γ(I0, . . . , Iq) (29)

1

n(m− 1) + 1
≥ γ(I0, . . . , Iq) . (30)
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The lemma follows. We first prove (29). We stress that below (I0, . . . , Iq) ∈ ID is fixed and the
probability is only over the random choice of x from X. Let Ei be the event that F(x, Ii) = 0. Then

1− γ(I0, . . . , Iq) = Pr
[
E0 ∨ E1 ∨ · · · ∨ Eq

]

= Pr
[
E0 ∨ (E0 ∧ E1) ∨ · · · ∨ (E0 ∧ Eq)

]

= Pr
[
E0

]
+ Pr [ (E0 ∧ E1) ∨ · · · ∨ (E0 ∧ Eq) ] (31)

≤ Pr
[
E0

]
+

q
∑

i=1

Pr [E0 ∧ Ei ] (32)

For every choice of x[1], . . . ,x[n] there is exactly one choice of x[0] such that F(x, I0) = 0, so that

Pr [E0 ] =
1

n(m− 1) + 1
. (33)

Now let i ∈ [1 .. q]. Since I0 6= Ii there is a j ∈ [1 .. n] such that Ii[j] 6= I0[j]. Let s ∈ {0, i} be such
that Is[j] = 0 and Ii−s[j] = 1. For any choice of x[1], . . . ,x[j − 1],x[j + 1], . . . ,x[n] let

t0 = −
∑

l 6=j

x[l]Is[l] and tj = −t0 −
∑

l 6=j

x[l]Ii−s[l] .

Then F(x, I0) and F(x, Ii) are both zero only if (x[0],x[j]) = (t0, tj). Since x[0] is drawn from
[−n(m− 1) .. 0] and x[j] from [0 ..m− 1] this means that

Pr [E0 ∧ Ei ] ≤
1

n(m− 1) + 1
· 1

m
. (34)

One might ask why (34) is an inequality rather than an equality; isn’t the probability that (x[0],x[j])
equals (t0, tj) exactly the term on the right? The reason it is not is that tj may not lie in [0 ..m−1],
so for some choices of the other coordinates of x, the probability that x[j] = tj is zero.

Putting together (32), (33), and (34) we have

1− γ(I0, . . . , Iq) ≤ 1− 1

n(m− 1) + 1
+

q
∑

i=1

1

m
· 1

n(m− 1) + 1
= 1− 1

n(m− 1) + 1

(

1− q

m

)

which implies (29).

To derive (30), we note that (31) implies that 1 − γ(I0, . . . , Iq) ≥ Pr
[
E0

]
which, when combined

with (33), implies (30).

E Instantiating Pairing Parameters

Pairings and their costs. Let GP = (G1,G2,GT , p, e, ψ) be pairing parameters as per Section 2.
We focus on the Type 2 [19] setting for these parameters, since the Type 1 (i.e., the symmetric
setting where G1 = G2) is not easily instantiated for higher security levels [19]. In the Type 2
setting, G1 is a subgroup of E(Fr) where Fr is a finite field. Group G2 is a subgroup of E(Frk)
where k is called the embedding degree. Group GT is a subgroup of F

∗
rk . All three groups G1,

G2, and GT are of order p for some prime p that divides rk − 1. Let ρ = (log r)/(log p), which we
call the representation multiplier. Elements of G1 require ρ log p bits to represent while elements
of G2 and GT require kρ log p bits to represent. We fix the following conventions regarding the
computational costs of basic operations related to an instantiation of GP.

• A group operation in E(Fr) takes at most 16 multiplications in the underlying field Fr [19]. A
multiplication in Fr takes time proportional to log2 r [28]. Therefore, we estimate Top(G1) ≤
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16 · log2 r.

• A group exponentiation in E(Fr) takes in the worst case log p operations in E(Fr), or Texp(G1) ≤
log p · Top(G1) [20].

• A group operation in G2 takes Top(G2) = k2 · Top(G1) [19] while an operation in GT takes
Top(GT ) = k2 ·Top(G1)/16 [19]. Exponentiations in either group, in the worst case, require time
Texp(G2) ≤ log p · Top(G2) and Texp(GT ) ≤ log p · Top(GT ) [20].

• A multi-exponentiation (of only a few elements) in a group G takes time approximately the
same as a single exponentiation, i.e. Texp(G) [29].

• Computing the homomorphism ψ requires time Tψ < Texp(G1).

• Addition or multiplication over the integers (of size at most 2p) or the integers modulo p is unit
cost.

Note that our estimates above are based on generic implementations which allow for simplicity
but do not consider instance-specific improvements on computational time. The running times
computed might therefore be over-estimates of the true costs for some choices of parameters and
particular implementations.

Concrete pairing parameters. We will consider several sets of values of log p, k, and ρ (which
fixes r, since log r = ρ log p), shown in Figure 6. The figure displays curve parameters for commonly
desired levels of security. Here the security level s means that roughly 2s operations should be
needed to break discrete log in one of the corresponding groups (G1, G2, or GT ). The group sizes
are selected following the guidelines of [31, 27, 28, 18, 19], and specific values for ρ and k follow
the recommendations of [18]. Note that for s = 192 and s = 256, it is not possible to achieve ρ = 1
without significantly increasing the subgroup size or using a much larger embedding degree, and
unfortunately we do not know how to construct pairings for prime order groups with such a large
embedding degree [18]. Thus we follow the recommendations of [18], and choose the smallest curves
with ρ ≈ 2. We’ve also set log rk to be large enough so that the resulting finite field is of size at
least as large as those suggested by the NIST key size recommendations [31]. (This is meant to
ensure, relative to the best known attacks, that solving DL in GT is no easier than solving discrete
logarithms in G1, as we discuss below.)

Time units. To be concrete we will require a common time unit, which we set to be the cost of
the group operation for the smallest group considered. Namely, the time to do a group operation
in our selected 160-bit curve: Tu = 16 ·1602.

Solving DBDH. To the best of our knowledge, the best (published) attack for solving DBDH
in our setting is to compute a discrete log in one of the three groups. For G1 and G2, which
as outlined above are subgroups of elliptic curves, the best published attacks for solving discrete
log are generic [28], e.g. Pollard’s algorithm [32]. Let P be the dl (discrete log) adversary that
implements Pollard’s algorithm against a group G. Then we have that

ǫp = Advdl
G (P) = T(P)2/(.88

√
p ·Top(G))2 (35)

where |G| = p and the advantage of a dl adversary is defined in the usual way (the probability that

it successfully computes, given base g ∈ G
∗ and ga for a

$← Zp, the discrete log a). Since elements of
G2 have a larger representation than those of G1 (by a factor of k, the embedding degree), Pollard’s
algorithm will run faster against G1 than G2, so we need not consider attacking G2 directly. For
GT , better attacks are known, particularly index-calculus methods [28]. Such attacks are sub-
exponential in the number of group operations, meaning they work faster than attacks against G1

and G2. Security therefore requires that GT has a representation that is significantly larger than
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that of G1’s. Our choices of pairing instantiations described above ensure that the time to compute
a discrete log in G1 (using Pollard’s algorithm) is a lower bound on the time to compute a discrete
log in GT (using index-calculus methods). This was accomplished by choosing rk appropriately.

F The BB1 Scheme and its Security

Boneh-Boyen IBE scheme. Fix pairing parameters GP = (G1,G2,GT , p, e, ψ) and let n be a
positive integer that is less than the number of bits required to represent elements in G1. Define
the hash family HBB: G

2
1 × {0, 1}n → G1 by HBB(u, I) = u[0] ·u[1]I for any u ∈ G

2
1 and where

I ∈ {0, 1}n is taken first encoded as an element of Zp in some canonical way. (The first argument is
the key and the second is the input.) The Boneh-Boyen IBE scheme [6] BB1 = (Pg∗,Kg∗,Enc∗,Dec∗)
associated to GP has associated identity space IdSp = {0, 1}n and message space MsgSp = GT .
Its algorithms are defined in the same manner as those given below for Waters’ scheme, modulo

replacing u
$← G

n+1
1 in Pg with u

$← G
2
1 and replacing H with HBB in Kg and Enc.

Security of BB1. Boneh and Boyen prove that BB1 is selective-ID secure [6]. Recall that
selective-ID security [11, 12] restricts attention to adversaries that must specify the challenge ID
before receiving the system parameters. To return to full security (as given in Section 2), they show
that any selective-ID-secure IBE scheme is also fully secure, though the reduction loses a factor
of 2n = |IdSp| in the advantage relation. We combine their results to assess the concrete security
of BB1. Let A be an ind-cpa adversary against BB1 = (Pg∗,Kg∗,Enc∗,Dec∗) which has advantage

ǫ = Advind-cpa
BB1

(A) and that makes q Extract queries. Then [6, Theorem 4.1] and [6, Theorem 7.1]
together imply that there exists a dbdh-adversary BBB1

such that

Advdbdh
GP (BBB∗) ≥ ǫ

2n
and T(BBB∗) = T(A) + T′

sim(q)

where N is the size of the identity space and

T′
sim(q) = O((q + 2) ·Texp(G1) + q ·Texp(G2) + Top(GT ) + Tψ) .

The work factor for BBB∗ is then

WF(BBB∗) = 2n · T(A) + T′
sim(q)

ǫ
= 2n ·WF(A) + ǫ−1T′

sim(q) .

We can compare this reduction’s efficiency to the two Wa reductions again by assessing when
WF(BBB∗) ≤WF(P) is satisfied. Figure 7 shows the result.

G Simulation Overhead for B
Let GP = (G1,G2,GT , p, e, ψ) be pairing parameters as per Section 2. We calculate Tsim, which
is the overhead of the reduction. The time used by B beyond that already utilized by A includes
time to answer A’s oracle queries. Note that all the integer operations used by B are on integers of
absolute value less than p. This holds even for integers output by F(x, I) as shown by Equation (11).

Adversary B first performs two computations of ψ and n multi-exponentiations in G1. Each
Extract query may execute KgS, resulting in n additions over Z (to compute F(x, I)), an inversion
over the integers modulo p (to compute F(x, I)−1)), a multi-exponentiation in G1, and a multi-
exponentiation in G2. The LR query may execute EncS, resulting in a multiplication in GT , a
computation of ψ, and an exponentiation in G1. Thus,

Tsim(n, q) = O (Tψ + (n+ q) ·Texp(G1) + q ·Texp(G2) + qn+ Top(GT )) . (36)
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κ ǫ q sBB sW sN

60 2−10 210 192 112 112

60 2−10 220 192 112 112

60 2−10 230 192 192 128

60 2−10 240 192 192 192

60 2−20 210 192 112 112

60 2−20 220 192 192 128

60 2−20 230 192 192 192

60∗ 2−20 240 192 192 192

60 2−30 210 192 192 128

60 2−30 220 192 192 192

60∗ 2−30 230 192 192 192

60∗ 2−30 240 192 256 192

60 2−40 210 192 192 192

60∗ 2−40 220 192 192 192

60∗ 2−40 230 192 256 192

60∗ 2−40 240 192 256 256

κ ǫ q sBB sW sN

100 2−10 210 – 128 192

100 2−10 220 – 192 192

100 2−10 230 – 192 192

100 2−10 240 – 192 192

100 2−20 210 – 128 192

100 2−20 220 – 192 192

100 2−20 230 – 192 192

100 2−20 240 – 256 192

100 2−30 210 – 192 192

100 2−30 220 – 192 192

100 2−30 230 – 256 192

100 2−30 240 – 256 192

100 2−40 210 – 192 192

100 2−40 220 – 256 192

100 2−40 230 – 256 192

100 2−40 240 – 256 256

κ ǫ q sBB sW sN

70 2−10 210 256 112 112

70 2−10 220 256 112 112

70 2−10 230 256 192 128

70 2−10 240 256 192 192

70 2−20 210 256 112 112

70 2−20 220 256 192 128

70 2−20 230 256 192 192

70 2−20 240 256 256 192

70 2−30 210 256 192 128

70 2−30 220 256 192 192

70 2−30 230 256 256 192

70∗ 2−30 240 256 256 192

70 2−40 210 256 192 192

70 2−40 220 256 256 192

70∗ 2−40 230 256 256 192

70∗ 2−40 240 256 256 256

κ ǫ q sBB sW sN

128 2−10 210 – 192 192

128 2−10 220 – 192 192

128 2−10 230 – 192 192

128 2−10 240 – 192 192

128 2−20 210 – 192 192

128 2−20 220 – 192 192

128 2−20 230 – 192 192

128 2−20 240 – 256 256

128 2−30 210 – 192 192

128 2−30 220 – 192 192

128 2−30 230 – 256 256

128 2−30 240 – 256 256

128 2−40 210 – 192 192

128 2−40 220 – 256 256

128 2−40 230 – 256 256

128 2−40 240 – 256 256

κ ǫ q sBB sW sN

80 2−10 210 256 112 112

80 2−10 220 256 112 128

80 2−10 230 256 192 192

80 2−10 240 256 192 192

80 2−20 210 256 112 128

80 2−20 220 256 192 192

80 2−20 230 256 192 192

80 2−20 240 256 256 192

80 2−30 210 256 192 192

80 2−30 220 256 192 192

80 2−30 230 256 256 192

80 2−30 240 256 256 192

80 2−40 210 256 192 192

80 2−40 220 256 256 192

80 2−40 230 256 256 192

80∗ 2−40 240 256 256 256

κ ǫ q sBB sW sN

192 2−10 210 – 256 256

192 2−10 220 – 256 256

192 2−10 230 – 256 256

192 2−10 240 – 256 256

192 2−20 210 – 256 256

192 2−20 220 – 256 256

192 2−20 230 – 256 256

192 2−20 240 – 256 –

192 2−30 210 – 256 256

192 2−30 220 – 256 256

192 2−30 230 – 256 –

192 2−30 240 – 256 –

192 2−40 210 – 256 256

192 2−40 220 – 256 –

192 2−40 230 – 256 –

192 2−40 240 – – –

Figure 7: Comparison of pairing setups required to provably ensure security of BB1 and Wa for
various security levels κ and values of ǫ and q. Here sBB represents BB1 under Boneh and Boyen’s
reduction, sW represents Wa under Waters’ reduction, and sN represents Wa under the new reduc-
tion. A dash indicates that a pairing setup greater than 256 is required.
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