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Abstract

We enumerate requirements and give constructions for
the vote storage unit of an electronic voting machine. In
this application, the record of votes must survive even an
unexpected failure of the machine; hence the data structure
should bedurable. At the same time, the order in which
votes are cast must be hidden to protect the privacy of vot-
ers, so the data structure should behistory-independent.
Adversaries may try to surreptitiously add or delete votes
from the storage unit after the election has concluded, so the
storage should betamper-evident. Finally, we must guard
against an adversarial voting machine’s attempts to mark
ballots through the representation of the data structure, so
we desire asubliminal-free representation. We leverage the
properties of Programmable Read Only Memory (PROM),
a special kind of write-once storage medium, to meet these
requirements. We give constructions for data structures
on PROM storage that simultaneously satisfy all our de-
sired properties. Our techniques can significantly reduce
the need to verify code running on a voting machine.

1 Introduction

“Good” vote storage mechanisms are a critical enabling
technology for reliable and secure electronic voting. With-
out a “good” vote storage mechanism, votes might be lost
during power failures, an adversary might be able to unde-
tectably tamper with the voting record post-election, or an
adversary with access to the voting record might be able
to compromise voter privacy. Unfortunately, “good” vote
storage in practice has traditionally not been easy to obtain,
either because of a lack of understanding about what the ap-
propriate goals should be, as in the case of Diebold [6], or
because of genuine subtleties in the design of a “good” vote
storage mechanism.

Because of the subtleties with and importance of “good”

vote storage mechanisms, we consider it an important re-
search objective to thoroughly (A) investigate what “good”
vote storage actually means, hence the quotes around
“good” above, and (B) investigate how to build “good” vote
storage mechanisms in practice.

Defining “good.” We believe a vote storage mechanism
should have at least the following seven properties:

1. Simple: We desire a vote storage mechanism that is
simple to implement, analyze, and verify.

2. Reliable: The vote storage mechanism should not rely
on fragile moving parts or other components that might
fail during use.

3. Durable : The record of votes should survive unex-
pected crashes of the vote storage mechanism.

4. Tamper-evident: Anyone with read access to the vot-
ing record should be able to detect post-election tam-
pering.

5. History-independent: Assuming anon-maliciousvote
storage mechanism, the contents of the voting record
should not reveal information about the order in which
ballots were cast.

6. Subliminal-free: A maliciousvote storage mechanism
should not be able to undetectably embed covert infor-
mation into the voting record.

7. Cost effective: Election officials may only deploy
these solutions if the cost per voter is not significantly
more expensive than alternative technologies.

Durability is important because, even if the vote storage
mechanism is reliable, catastrophic events like power loss
and battery failure might cause a machine to crash. His-
tory independence is important since it might otherwise be
possible to compromise voter privacy if one also knows the



order in which people voted [6]. Subliminal freedom is im-
portant because, if the property is not met, a malicious vote
storage device could use the covert channel to leak infor-
mation about who voted for whom [5]. Although a voter-
verifiable paper audit trail (VVPAT) might alleviate some
of the need for these properties, we still consider history-
independence and the absence of subliminal channels to
be very important if VVPAT-enabled electronic voting ma-
chines also maintain digital copies of the voting record.

Our proposals for simultaneously achieving these prop-
erties use a combination of hardware and algorithmic tech-
niques. We summarize our proposals for simplicity, relia-
bility, tamper-evidence, history-independence, subliminal-
freeness, and durability next, with details in the full pa-
per [10]. We evaluate the cost effectiveness of our tech-
niques in Section 4.

Scope of our work.Our work focuses on the interaction be-
tween voting machinesoftwareand voting storage. As we
describe below in our discussion of an architecture for an
electronic voting machine, our adversarial model includes
malicious software in the voting machine that wishes to un-
detectably tamper with or leak information about already
cast votes. Our key insight is that by properly designing
the vote storage unit, we can reduce what must be verified
about the main code of the electronic voting machine. For
example, if the vote storage unit provides tamper-evidence,
we need not verify that the rest of the software refrains from
overwriting previously cast ballots. We believe our methods
culd help reduce the cost to verify voting machine software.

We assume that other mechanisms will be used to en-
sure the physical security of the polling place and of the
voting hardware. Physical security is essential. For in-
stance, if the storage unit can be physically swapped with an
“identical-looking” unit carrying different vote totals,then
the integrity of the entire election process is compromised.
Likewise, an adversary with physical access to the polling
place could plant hidden video cameras, mount timing or
power consumption attacks, or attempt to tamper with vot-
ing equipment. While important, we do not address these
threats in this work; they are outside the scope of this paper.

2 Our Architecture for an Electronic Voting
System

We now describe our proposed architecture for a Direct
Recording Electronic (DRE) voting machine (see Figure 1).
We decompose the machine into three parts: a mainDRE
component, avote storage module, and a removablestor-
agedevice, represented in the figure by a PROM. A PROM
is a special type of storage in which bits may transition from
1 to 0 but not vice versa. If traditional antifuse [15] PROMs
are not readily available, we suggest that it might be pos-

sible to instead use One-Time Programmable Electrically
Programmable Read Only Memory (OTP EPROMs). An
EPROM is a device in which bits may be set electronically,
but may only be cleared by exposure to ultraviolet light. An
OTP EPROM is an EPROM device in an opaque housing
that prevents such erasure. Using an OTP EPROM is a re-
laxation of the write-once property because OTP EPROMs
can still be reset under some circumstances, e.g., if their
protective coating is removed and if they are exposed to ul-
traviolet light. OTP EPROMs are reasonably inexpensive,
so we can afford to use each chip only once. For instance,
the ST Microelectronics M27C4001-10B1 is a4MBit OTP
EPROM chip that costs $2.75 [9].

At the beginning of the election, the DRE component
sends anInitialize command to the vote storage module to
open the polls. Thereafter, the DRE component handles all
interaction with the voter and produces a cast ballot. The
ballot is in turn passed to the vote storage module by call-
ing Insert. The vote storage module writes the ballot to the
storage device, using theClearbit andReadbit interfaces.
At the end of the election, the DRE invokes theFinalize op-
eration, which tells the vote storage module to modify the
storage device in such a way as to preclude further votes
from being recorded. The storage device might then be re-
moved from the voting machine and transported securely to
election headquarters, and the stored ballots will be avail-
able for tallying through the storage device’sDump inter-
face.

Security assumptions. We assume that the DRE has no ac-
cess to writable media except through the vote storage mod-
ule. Furthermore, we assume that none of the DRE’s state
survives between voting sessions. We also assume that no
information can pass from the storage device to the state-
less DRE component. This ensures that the only long-term
storage available to the DRE is managed by the vote stor-
age module. Our intent is that the vote storage module is a
small and easily-verified piece of code that is isolated from
the main part of the DRE. We assume for the purposes of
this paper that the ballot reflects exactly the intent of the
voter; for example, a voter-verified paper audit trail may be
used to check the machine’s result. Other than these restric-
tions, however, the DRE component may behave arbitrarily
and adversarially.

3 Approach

Tamper-evident vote storage.Our approach for providing
tamper-evidence involves what we believe to be a novel ap-
plication of Manchester codes and programmable read-only
memory (PROM). At a high level, we apply a Manchester
code to votes before writing the votes to a PROM. This al-
lows us to exploit the fact that bits on a PROM can only
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Figure 1. Our DRE architecture. The main part of the DRE has no access to writable media except
through the vote storage module. After each vote is cast, the completed ballot is passed to a special
vote storage module that arranges for it to be recorded on per manent storage.

transition from 1s to 0s and not vice versa. The Manchester
encoding of an-bit stringx is a2n-bit codewordM(x) ob-
tained by applying the mapping0 7→ 01, 1 7→ 10 to each bit
of x. For example, the Manchester encoding of the string
101 is 100110.

The key property of the Manchester encoding is that if
any set of1 bits in a Manchester codeword are flipped to
0s, then the result is no longer a valid codeword. For exam-
ple, if the first1 bit is cleared in100110, the resulting string
000110 is no longer a valid Manchester codeword. This
gives us a simple test to determine whether an adversary has
tampered with data stored on a PROM: we encode the data
using the Manchester encoding, and then later check that
the PROM still contains a valid codeword. By the proper-
ties of the PROM, any modification by the adversary will
result in an invalid codeword and so can be easily detected.
Consequently, Manchester encoding ensures that data, once
written to the PROM, cannot be undetectably changed. In
the full paper we show an extension of this idea that uses
only n + ⌈lg(n + 1)⌉ bits instead of the2n bits required for
a Manchester encoding. We use PROMs and avoid other
forms of write-once media, such as CD-Rs, because of our
simplicity and reliability goals.

History-independent and subliminal-free vote storage.
We are careful to ensure that one can implement our
history-independent and subliminal-free data structureson
a PROM, which isnot the case with other proposals for
history-independence that assume erasable storage [1, 3, 8,
11]. Even under the restriction of non-erasable storage,
there are several natural approaches for achieving history-
independence that use random coins when storing each
vote: for example, to store a vote, select at random an un-
used location on the PROM and store the vote there. How-
ever, because a malicious vote storage device could use its
choice of “random” coins to leak information to a conspir-
ator [5], and because one might prefer not to assume the

presence of a secure random number generator even in the
absence of malicious intent, it is also natural to look for
history-independent data structures that are deterministic.

SupposeΩ is the set of items which one may insert into
our data structure. IfΩ is finite and fairly small, one can
create a history-independent data structure by preallocating
a region of a PROM for each element inΩ and, within each
region, counting in unary the number of times that element
is inserted.

WhenΩ is large, however, the unary counter approach
becomes very space inefficient. Leveraging an observation
by Naor and Teague [11] that the lexicographic ordering of
a set of elements must by definition be history-independent,
one can adopt the following “copyover list” data structure
for largeΩ: to insert an element into the data structure, sort
the new element along with the existing elements, write that
sorted list to the next unwritten portion of the PROM, and
then erase the previous sorted list by setting all its bits to
zero. Notice that the length of the just-erased list depends
only on the number of items in the data structure, not their
content or the order in which they were inserted. Notice also
that the copyover list supports arbitrary write-in candidates,
subject to a bound on the length of the candidate’s name.

We can improve our space efficiency by either combin-
ing the above two approaches or by employing a hash ta-
ble, though in the latter case we must take special care to
ensure history-independence even when two elements hash
to the same bucket. The key insight we use to ensure this
property is to implement each bucket using another history-
independent data structure, such as the previous “copyover
list” proposal. The main improvement in space efficiency
for such a hash table is that copying only occurs when there
is a hash collision. Storing each bucket as a separate copy-
over list yields a data structure we call alexicographic chain
table.

The resulting structure is history-independent. Just as
in the case of a single list, the length and position of



Data Structure Requirements HI TE VSF Space
Unary Counter |Ω| small Yes Yes Yes O(n)
Copyover List None Yes Yes Yes O(n2)

Lexicographic Table None Yes Yes Yes O(n log2 n) w.h.p
Random Table RNG Yes Yes (1) O(n)

Figure 2. Summary of our data structures and their propertie s. Here RNG stands for “random num-
ber generator.” HI, TE, and VSF stand for history-independe nce, tamper-evidence, and verifiable
subliminal-freedom, respectively. Random placement tabl es are subliminal-free only if the RNG has
been verified to be perfect.

each bucket’s copyover list depends only on the number of
items in the list. This leaves the issue of whether different
amounts of deleted material in each bucket leak informa-
tion about the order of votes. To see that this is not the
case, observe that the amount of deleted material depends
only on the number of items in each bucket, which is equal
to the number of hash collisions for that bucket. The ad-
versary, however, can compute the number of collisions it-
self given only the abstract contents of the data structure
and the hash function (independent of the order in which
items were inserted). Therefore, this does not leak informa-
tion about the order in which votes were cast. We provide
subliminal-freeness using an idea from collusion-free pro-
tocols: the voting machine commits to the random hash key
before it sees any votes, then reveals the hash key at the end
of the election [7]. Details and extensions are in the full
paper [10].

Another approach we consider is arandom placement ta-
ble, in which we pick a random position in a table when an
element is inserted. If the position is empty, the element in-
sertion succeeds and the position is filled, otherwise another
position is picked. The main benefit of a random placement
table is that it is space-efficient. The main drawback, how-
ever, is that the random placement table requires a random
number generator that has to be verified correct; otherwise
a malicious DRE could mark ballots or otherwise leak in-
formation in the order of placement. We give a comparison
of our data structures in Figure 2.

Engineering issues with PROM storage. We acknowl-
edge that there are engineering challenges with implement-
ing our solutions on PROMs. For example, the atomicity
properties of PROMs vary widely; writes may occur out of
order or may only partially complete, especially in cases
where loss of power or a crash occurrs during a write. We
do not consider these issues in detail here, but do note these
issues have been addressed by others in other contexts. For
example, Niijima [12] reports on a log-structured file sys-
tem designed to achieve good performance and durability
even in the face of atomicity limitations. Further afield, but
also illustrating both the limitations of and work-arounds

for similar technologies, Gal and Toledo survey a wide va-
riety of file systems designed for flash memories that use
“wear-levelling” to avoid writing too many times to a single
storage sub-unit between full resets [2].

In general, this work does not cover these engineering
issues, focusing instead on the algorithmic design of data
structures for vote storage. We consider PROM storage as
an arbitrary-length array addressable at the bit granularity,
with atomic operations to read and set each bit. Further-
more, we assume that all operations complete one at a time,
in the order in which they are issued. Dealing with the engi-
neering issues of PROM devices requires future work. We
note, however, that our data structures do not require the
same flexibility as a general-purpose file system. In addi-
tion, the performance requirements of the vote storage ap-
plication are fairly modest.

Caveat.While we envision a vote storage mechanism meet-
ing our properties being an important component of elec-
tronic voting machines, vote storage is only one of many
components that need to be made reliable and secure. Hav-
ing addressed vote storage, we hope others can address the
remaining portions of electronic voting machines.

4 A Sample Cost Analysis

We now calculate the cost for implementations of our
ballot data structures. We use data from the November 2,
2004 election for precinct 213100001 in Alameda County,
California1. Our dataset is from the Smart Voter website at
http://www.smartvoter.org. The storage require-
ments, and hence cost of storage, depends on the number of
voters, number of candidates, and number of write-ins.

There were 9 races with a total of 31 candidates and 20
(yes-no) state propositions or local ballot measures. In the
absence of accurate polling place data, let us derive an esti-
mate for the number of voters using each voting machine. If
we assume it takes 15 seconds to consider each race or bal-

1Precinct 213100001 is the precinct for the Claremont Hotel, site of the
IEEE Symposium on Security and Privacy.



lot measure over 13 hours of polling time, this allows for a
maximum of 104 voters. For safety, we triple that guess and
assume there are a maximum of 300 voters per voting ma-
chine. In contrast, anecdotal evidence suggests that a busy
machine might receive 100–150 votes at most.

We use a unary counter to represent each race or option
in a measure. For the example ballot, we will use31 + 2 ×
20 = 71 unary counters, one for every choice. Recall that
incrementing a unary counter uses one bit. We must size
the unary counter to be larger than the maximum number
of expected voters; in our case, a total of71 × 300/8 ≈
2.60 KB suffices.

Of course, for each of the 9 races, the voter is free to
write in the candidate of their choice. A write-in consists
of the candidate’s name (30 characters long) as well as a
unary counter (300/8 ≈ 38 bytes) for a total of 68 bytes
per distinct write-in. We store each race in a separate data
structure, so a write-in for a candidate in one race cannot
be linked to any other votes in that race or any other race.
This provides subliminal-freedom even in the presence of
write-ins.

Note that the number of distinct write-in candidate
names (ignoring multiplicity) is likely to be significantly
less than the total number of write-in votes (including mul-
tiplicity), since several people may write in the same can-
didate. Obtaining data on the number of distinct write-ins
in actual elections is tricky, though. Published data for this
election indicates a 0.6% write-in rate for each of the local
races. The data, however, is incomplete. In particular, no
data was available on write-ins in national races; also, the
data available to us did not provide the number of distinct
write-ins. If we make the assumption that the write-in rate
is uniform across all DREs, we would expect each race to
have fewer than 0.6% distinct write-ins. Election admin-
istrators must be prepared, however, for significantly more
write-ins.

In Figure 3 we display a graph comparing three of our
constructions2. The cost is almost entirely dependent on the
maximum number of distinct write-ins per race that elec-
tion officials need to be prepared for: the greater the de-
sired write-in capacity, the more chips the DREs need. In
comparison, the cost for storing regular candidates (or re-
peated write-in votes for a single candidate) is negligible.
Using random placement tables, the entire election can fit
on a single4MBit chip, even with 50 distinct write-ins per
race. If election workers use a copyover list instead, only
two such chips are required to achieve the same capacity.
For our cost estimates, we use the4MBit OTP EPROM
chip described in Section 2 at a cost of $2.75 per chip. No-
tice that this provides a tremendous degree of over-capacity:

2With the lexicographic chaining table, there is a small chance of
bucket overflow. Therefore, for this scheme, we choose table and bucket
sizes so that the probability of bucket overflow is no more than2

−30.
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Figure 3. Cost estimates for a single voting
machine. Cost is a step function because
we assume that storage must be purchased
in increments of a 4 megabit chip. Note the
expected number of distinct write-ins is less
than 1 per race, so costs remain reasonable
even if the actual number of write-ins far ex-
ceeds the expected number.

absent a denial of service attack, it would be rare to en-
counter a race that received 50 write-ins (which corresponds
to half the expected number of voters), let alone 50 distinct
write-in names. Tamper-evidence is provided by writing a
Manchester-encoded checksum of the chip as a whole at the
end of the election, as we detail in the full version, and so
requires only a small amount of overhead, which we factor
into our calculations.

Even though the copyover list exhibits quadratic asymp-
totic behavior, it performs well in the voting application.
Lexicographic hash chaining, even though it features better
asymptotics, must over-provision space for many distinct
values hashing to the same value; to obtain a suitably low
chance of exhausting the space in one hash bucket induces a
high constant value that is hidden in the asymptotic behav-
ior.

The costs for using the random placement tables or a
copyover list compare favorably with the cost of an optical
scan ballot. Optical scan ballots can cost $0.10 to $0.30 per
voter [14]; securely storing ballots on a DRE using our se-
cure vote storage techniques cost less than $0.05 per voter.

5 Related Work

Micciancio defined the basic problem of privacy for data
structures and gave a construction of “oblivious trees” [8].
Naor and Teague extended the notion and gave several con-
structions, including the priority hash chaining construction



that we build on [11]. Hartline et al. improved several data
structures and studied relaxations of the history indepen-
dence requirement [3]. Irani, Naor, and Rubinfeld showed
that a Turing Machine with write-once polynomial space
decides exactly the languages in the class P [4]; our PROM
model differs in that multiple writes are allowed, so long as
the new value can be obtained by flipping1s to0s. Shamos
independently proposed using a hash table with unary coun-
ters for storing votes in a history-independent manner [13],
although Shamos’s scheme does not achieve perfect history
independence. There is also a large body of work on im-
plementing file systems with solid state storage, such as
flash memory. Gal and Toledo survey this work, and Ni-
ijima gives an in-depth report on a flash memory file system
that addresses engineering issues we discuss above [12, 2].

6 Conclusions

We have described constructions for data structures suit-
able for vote storage on electronic voting machines. Our
techniques exploit commodity hardware, so that the con-
sumables cost for an election is reasonable. Our vote
storage module provides a history-independent, tamper-
evident, durable, and subliminal-free representation method
to securely record ballots in an isolated module. We be-
lieve that a vote storage module with these properties will
simplify the design of DRE voting systems and ultimately
enhance the public’s confidence in them.
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