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Abstract

Consider a challenge-response protocol where the probability of a correct response is at least α for
a legitimate user, and at most β < α for an attacker. One example is a CAPTCHA challenge, where
a human should have a significantly higher chance of answering a single challenge (e.g., uncovering a
distorted letter) than an attacker; another example is an argument system without perfect completeness.
A natural approach to boost the gap between legitimate users and attackers is to issue many challenges,
and accept if the response is correct for more than a threshold fraction, for the threshold chosen between
α and β. We give the first proof that parallel repetition with thresholds improves the security of such
protocols. We do this with a very general result about an attacker’s ability to solve a large fraction
of many independent instances of a hard problem, showing a Chernoff-like convergence of the fraction
solved incorrectly to the probability of failure for a single instance.

Keywords: challenge-response protocols, parallel repetition with threshold, direct product theorem.

1 Introduction

Cryptographic protocols require problems that are easy for legitimate users but hard for attackers. The
hardness of a problem may be either computational (when attackers are assumed computationally bounded)
or information-theoretic (when attackers are computationally unbounded). Ideally, a problem should be
reliably easy for legitimate users (i.e., the chance of failure for legitimate users should be negligible), but
reliably hard for attackers (i.e., the chance of the attacker’s success is negligible). In reality, one may have
a problem which is only somewhat easier for legitimate users than for attackers, i.e., the gap between the
ability of legitimate users to solve the problem and that of attackers is relatively small. It is thus important
to have a method for increasing this gap, thereby improving the security of cryptographic protocols based
on such problems.

Direct product theorems provide one such method for making problems reliably hard for attackers.
The idea is that if an attacker has some chance of failing on a single challenge, the chance of solving
multiple independent challenges should drop exponentially fast with the number of challenges. Examples of
such theorems in cryptography include Yao’s theorem that weak one-way functions imply strong one-way
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functions [Yao82] and the results of [BIN97, CHS05] showing similar drops even when an attacker cannot
know for certain whether a response to a challenge is correct. Direct product theorems are also important in
average-case complexity, circuit complexity, and derandomization. While intuitive, such results are frequently
non-trivial to establish. Moreover, there are settings where the intuition is incorrect, and many instances
are not proportionally harder; examples where direct products fail are parallel repetition for multiple round
protocols and for non-verifiable puzzles [BIN97, CHS05, PW07].

A standard direct product theorem can only be used to amplify the gap between legitimate users and at-
tackers if legitimate users are successful with high probability. Indeed, the legitimate user’s chance of solving
k independent challenges also drops exponentially fast with k. So unless the legitimate user’s probability of
failure isn’t much more than 1/k to start, both legitimate users and attackers will almost certainly fail to
solve all of the problems.

Suppose that a legitimate user has probability α of solving a randomly generated challenge, while an
attacker has probability β < α. For k independent random challenges, we expect the legitimate user to be
correct on αk of them. By Chernoff bounds, the actual number of correct answers will be very close to αk,
with high probability. On the other hand, the expected number of correct answers by the attacker is βk.
Intuitively, it should be unlikely that the actual number of correct answers is much larger than the expected
number. That is, by analogy with Chernoff bounds, the attacker’s probability of answering correctly on
significantly more that the expected number βk of random k challenges should be exponentially small in the
expectation βk.

This intuition turns out to be correct. The main result of our paper is such a strengthening of the direct
product theorem for a very general class of problems, weakly verifiable puzzles, introduced in [CHS05].

1.1 Example: CAPTCHA

Before defining the class of weakly verifiable puzzles, we consider an example of a cryptographic protocol
where our results apply. A CAPTCHA protocol is meant to distinguish between humans and programs,
usually using a visual challenge based on distorted text with extraneous lines [ABHL03]. While there seems
to be a large gap between the abilities of typical humans and the best current vision algorithms to solve
these challenges, algorithms can solve a non-negligible fraction of the puzzles, and many humans (including
us) fail a non-negligible fraction of the puzzles.

An obvious, intuitive way to increase the gap is to issue many independent challenges, and accept if the
solver is successful on a larger fraction than expected for an attacker, even if the solver does not succeed on
all challenges. The fact that sequential repetition improves the gap was observed by [ABHL03]. The authors
of [ABHL03] also imply that parallel repetition improves the gap, referring to the results in [BIN97] for this
“more complicated” case. Indeed, the direct product theorem of [BIN97] (improved by [CHS05]) does apply
to parallel repetition of CAPTCHA protocols, but it only shows that the probability of algorithmic success
decreases with repetitions, not that the gap improves. Our stronger version of the direct product theorem
gives the first proof that the parallel repetition protocol suggested in [ABHL03] does indeed improve the
gap between legitimate users and attackers.

A CAPTCHA protocol issues a puzzle (e.g., distorted text) such that the correctness of a solution to the
puzzle is easy to verify by the generator of the puzzle (who knows the text that was distorted), but not by
the attacker (who is just given the puzzle, not the way it was generated). Such puzzles are called weakly
verifiable in [CHS05].

1.2 Our main result

Before stating our main theorem, we need several definitions. For a weakly verifiable puzzle P and a natural
number k, we denote by P k the k-wise direct product of P , i.e., P k is the puzzle that asks k independent
challenges from P . For a parameter 0 ≤ δ ≤ 1, we say that P is δ-hard for time t if every randomized
algorithm running in time t(n) has probability at least δ of answering incorrectly a randomly generated
challenge from P (where the probability is both over input challenges from P and the internal randomness
of the algorithm), for sufficiently large input size n. Finally, for parameters k ∈ N and 0 ≤ ν, δ ≤ 1,
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we say that the k-wise direct product puzzle P k is ν-approximately δ-hard for time t if every randomized
algorithm running in time t(n) has probability at least δ (over k-tuples of challenges from P k, and its internal
randomness) of answering incorrectly at least νk of the input k challenges.

Our main theorem states that for δ-hard puzzle P , its k-wise direct product P k is, essentially, δ-
approximately (1− o(1))-hard. That is, not only is it impossible to solve all k challenges for a non-negligible
fraction of k-tuples from P k, but also it is impossible to make significantly fewer than the expected number
δk of mistakes on the input k challenges. More precisely, we have the following.1

Theorem 1.1 (Main Theorem). Let P be a weakly verifiable puzzle that is δ-hard for time t. Let k ∈ N
and γ > 0 be arbitrary, and let ε ≥ (100/γδ) · e−γ2δk/40. Then the direct product puzzle P k is (1 − γ)δ-
approximately (1− ε)-hard for time t′ = t(n) · poly(ε, 1/n, 1/k).

We call this a Chernoff-type direct product theorem, since it shows that the “tail bound” on the number
of correctly solved puzzles drops exponentially in the region beyond its expectation.

Standard Chernoff bounds show that, if the legitimate user can solve the problem with probability of
failure less than, say, (1− 2γ)δ, then they will succeed in solving all but (1− γ)δk of the input k challenges,
for almost all k-tuples from P k. Thus our Chernoff-type direct product theorem indeed provides a way to
amplify any gap between legitimate users and attackers.

Finally, we should also note that for direct products with threshold it is impossible to get the bound
ε = (1 − δ)k, which is possible for standard direct products [CHS05]. Indeed, consider the case of a puzzle
P such that P is easy for (1 − δ) fraction of inputs, but is information-theoretically impossible to solve
on the remaining δ fraction of inputs. Then the probability of making fewer than δk mistakes on a given
random k-tuple of challenges is the tail bound for the binomial distribution where one flips k independent
coins with the “heads” probability δ. When δk is sufficiently far from 0 and far from k (e.g., for constant
0 < δ < 1), then the Chernoff bound provides a tight estimate for this tail bound. Thus the bound of our
main theorem cannot be significantly improved, except possibly for making the constant in the exponent of
ε in Theorem 1.1 (currently 40) closer to that of the Chernoff bound (which can be as low as 2).

1.3 Weakly verifiable puzzles: Definition and examples

Our result holds for weakly verifiable puzzles defined by [CHS05]. A weakly verifiable puzzle has two com-
ponents:

• a distribution ensemble D = {Dn}n≥1 on pairs (x, α), where x is called the puzzle and α the check
string (n is the security parameter); and

• a polynomial-time computable relation R((x, α), y), where y is a string of a fixed polynomially-related
length.

The puzzle is thought of as defining a type of challenge x, with y being the solver’s response. However,
the correctness of the response is not easily verified (and may not be well-defined) given just x. On the other
hand, the party generating the puzzle x also knows α, so can verify correctness.

In [CHS05], the distribution D is restricted to be polynomial-time sampleable. In this case, without loss
of generality, we can assume that α is the n-bit random tape used to generate the puzzle and check string
(if not, we can redefine R as R′ which first generate the check string from the random tape, then verifies R).
Thus, to simplify the notation in our proofs, we usually assume that α is a uniformly generated n-bit string,
and that x is a function of α. A version of our result also holds when D is not polynomial-time sampleable,
but only for non-uniform adversaries (since many samples from D are required as advice).

Here we summarize some important properties of weakly verifiable puzzles. The generation and verifica-
tion procedures for the puzzles are polynomial-time algorithms. A puzzle may have multiple correct answers
(since an answer to a puzzle is verified using a relation). The same puzzle may be generated using multiple

1The parameters in the Main Theorem stated here are stronger than those reported in the conference version of this
paper [IJK07]; the improvement comes from using the sampling lemmas of [IJKW08] instead of those from [IJK06].
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random tapes; we call such puzzles ambiguous. Moreover, since the verification procedure takes as input the
random tape α used to generate a puzzle x, the set of correct answers for x depends on α, and these sets of
corrects answers may be different (even disjoint) for different random tapes α and α′ that generate the same
puzzle x.

Some examples of how weakly verifiable puzzles arise in different settings include:

1. A challenge-response protocol where a prover is trying to get a verifier to accept them as legitimate
(e.g., a CAPTCHA protocol where the prover is trying to convince the verifier to accept them as
human). We assume that the verifier is polynomial-time with no secret inputs (although an honest
prover may have secret inputs). Let α be the random bits used by the verifier. In the first round,
the verifier sends a challenge x = g(α), and the prover sends a response y. The verifier then decides
whether to accept by some polynomial time algorithm R(α, y). Our results are interesting if there is
some chance that the honest prover will be rejected, such as an honest human user failing a CAPTCHA
challenge based on visual distortion.

2. A secret-agreement protocol with a passive eavesdropper. Let rA be the random tape used by one
party, and rB that by the other party. Then the conversation C is a function of both rA, rB , as is
the message m agreed upon. The eavesdropper succeeds if she computes m given C. Then consider
α = (rA, rB), x = C, and R(C, (rA, rB), y) if y is the message agreed upon by the two parties using rA
and rB . Note that there may be some tapes where the parties fail to agree, and thus have no success.
Our result shows that, if the parties agree more probably than the eavesdropper can guess the secret,
then by running the protocol several times they will almost certainly have more shared secrets than the
eavesdropper can guess. Note that, unlike for challenge-response protocols, here there is no restriction
on the amount of interaction between the legitimate parties (as long as the eavesdropper is passive).

3. Let f be a (weak) one-way function, and b a (partially-hidden) bit for f , in the sense that it is
sometimes hard to predict b from x = f(z). Since f may not be one-to-one, b may be hard to predict
for either information-theoretic or computational reasons. Here, we let α = z, x = f(α), and R(x, α, b′)
if b′ = b(α). Our results say that no adversary given an n-tuple of xi = f(zi)’s can produce a string
closer in relative Hamming distance to b(α1) . . . b(αn) than the hardness of prediction.

4. In the non-uniform setting, our results apply to any function. If f is a function (possibly non-Boolean,
or even multi-valued, as long as it has at most a polynomial number of values), we can define α to be
(the set of all elements in) f(x). Then y ∈ f(x) if and only if y ∈ α, so this is testable in polynomial-
time given α. This distribution isn’t necessarily polynomial-time sampleable, so our results would only
apply for non-uniform adversaries (e.g., Boolean circuits).

Note that in some examples, success may be ill-defined, in that x may not uniquely determine α, and so
it may not be information-theoretically possible to know whether R((x, α), y) given only x.

1.4 Related work

The notion of a Direct Product Theorem, where solving multiple instances of a problem simultaneously is
proven harder than a single instance, was introduced by Yao in [Yao82]. Due to its wide applicability in
cryptography and computational complexity, a number of different versions and proofs of such theorems can
be found in the literature; see, e.g., [GNW95] for a good compilation of such results.

In this paper, we use some of the proof techniques (namely the trust halving strategy) introduced by
Impagliazzo and Wigderson in [IW97]. Such techniques were also used to prove a version of the Direct
Product Theorem in a more general cryptographic setting by Bellare, Impagliazzo and Naor in [BIN97]. It
is shown in [BIN97] that the soundness error decreases exponentially with parallel repetition in any 3-round
challenge-response protocol, but such error amplification might not be possible for a general (> 3)-round
protocol. Pietrzak and Wikstrom in [PW07] extend this negative result. On the positive side, Canetti,
Halevi and Steiner in [CHS05] used ideas from [BIN97] to define a general class of weakly verifiable puzzles
for which they show that parallel repetition amplifies hardness, also giving a quantitative improvement over
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[BIN97]. More recently, Pass and Venkitasubramaniam [PV07] show similar positive results for constant-
round public-coin protocols.

All the previous results mentioned above consider parallel repetition without threshold, i.e., they consider
the hardness of answering all the questions.

Comparing the techniques of [BIN97] and those of [CHS05]. Our construction uses a version of
the trust-reducing strategy from [IW97, BIN97]. In a trust-reducing strategy, the input puzzle is hidden
among (k − 1) randomly generated puzzles, and the number of mistakes the attacker makes on the random
puzzles is used to compute the probability with which the algorithm trusts the attacker’s answer for the
input puzzle.

A different approach was used in [CHS05]. Their proof strategy (similar to that of Goldreich, Nisan and
Wigderson [GNW95]) is roughly as follows. Suppose that some attacker C̄ correctly answers all k challenges
for at least ε fraction of k-tuples from some direct product puzzle P k, where P is δ-hard. Then (arguing by
induction) one shows that there exists a position 1 ≤ i ≤ k and fixed inputs x1, . . . , xi−1 for the positions
before i such that the probability of getting a correct answer for the ith input in a given k-tuple, conditioned
on the attacker’s answers for the positions i + 1, . . . , k being correct, is at least 1 − δ. Thus, to answer a
challenge x, one places x into position i, randomly generates challenges for the positions higher than i, runs
the attacker C̄ on the constructed k-tuple, and outputs the answer of C̄ for x if the answers of C̄ on all the
k − i random challenges are correct; otherwise one repeats with new k − i random challenges.

The argument of [CHS05] allows one to conclude that ε = (1 − δ)k, which is information-theoretically
the best possible bound, and is a quantitative improvement on the bound on ε shown in [BIN97]. While the
techniques of [CHS05] yield stronger (optimal) bounds for the direct product than those of [BIN97], we do
not see how to use the techniques of [CHS05] for the case of direct products with threshold that we consider
in the present paper. In our case, we need to deal with a variable number of mistakes even for “good”
k-tuples, and we manage to adapt the techniques of [BIN97] to handle such mistakes.

1.5 Our techniques

As in [IW97, BIN97], our proof of the main theorem is constructive: we show how to use a breaking strategy
that solves the threshold puzzle with probability ε as a subroutine in an algorithm that solves a single puzzle
with probability greater than 1− δ. However, we need to deviate substantially from the previous analysis.

The way it is argued in [IW97, BIN97] that all but δ fraction of inputs are easy is as follows. Suppose an
algorithm A succeeds on a significant fraction of k-tuples of random puzzle instances. Then one constructs
another algorithm A′ such that, for every subset of puzzle instances H of density at least δ, algorithm A′

succeeds almost surely on a random instance in H. Now consider the set of all puzzle instances where A′

gives a wrong answer. By the above, this set must have density less than δ (or else A′ would succeed almost
surely on a random element in the set).

In contrast, in the threshold scheme, it is not possible to construct an algorithm A′ with the similar
guarantee that A′ succeeds almost surely on a random instance in H, for every subset H of density at least
δ. Indeed, for a given puzzle P , there may be a subset H ′ of density (1 − γ)δ of input instances where no
algorithm can succeed with non-negligible probability, while all the other instances outside H ′ are easy to
solve. In this case, there is an algorithm that solves almost all k-tuples of puzzle instances, if we allow up to
about (1− γ)δk errors. However, for any set H of density δ such that H ′ ⊆ H, no algorithm A′ can succeed
on more than γ fraction of elements of H.

In order to get around this obstacle, we need a more global way of analyzing the trust-reducing strategy.
Our main tools for doing this are sampling lemmas from [IJKW08]. The high-level idea is as follows. Let G
be the set of k-tuples of puzzle instances where some algorithm A is correct in all but (1 − γ)δk positions.
Suppose that G has density ε. The trust-reducing strategy essentially allows us to construct an efficient
oracle for testing membership in G. The overall strategy for solving a puzzle instance x is then to sample
random k-tuples containing x, until getting the tuple that falls into G; for such a tuple, we output the value
A gives for the xth position in the tuple.
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Since G has density ε, we are almost sure to sample a tuple from G within poly(1/ε) iterations. We use a
sampling lemma to argue that, conditioned on sampling a random k-tuple from G, the position of the input
x is distributed almost uniformly within the tuple. Hence, in that case, we get the correct answer for x with
probability at least 1− (1− γ)δ = 1− δ + γδ (since every tuple in G has at most (1− γ)δk bad positions).
Accounting for possible errors of our membership oracle for G, the probability of our sampling procedure
missing the set G, and the fact that the xth positions is only almost uniform within the tuple, we conclude
that our algorithm succeeds on at least 1− δ fraction of inputs x.

2 Preliminaries

2.1 Basics

For a natural number k, we will denote by [k] the set {1, . . . , k}.

Lemma 2.1 (Hoeffding bound). Let X1, . . . , Xt be independent identically distributed random variables
taking values in the interval [0, 1], with expectation µ. Let χ = (1/t)

∑t
i=1Xi. For any 0 < ν ≤ 1, we have

Pr[χ < (1− ν)µ] < e−ν
2µt/2.

2.2 Samplers

We will consider bipartite graphs G = G(L ∪R,E) defined on a bipartition L ∪R of vertices; we think of L
as left vertices, and R as right vertices of the graph G. We allow graphs with multiple edges. For a vertex
v of G, we denote by NG(v) the multiset of its neighbors in G; if the graph G is clear from the context, we
will drop the subscript and simply write N(v). Also, for a vertex x of G, we denote by Ex the set of all
edges in G that are incident to x. We say that G is bi-regular if the degrees of vertices in L are the same,
and the degrees of vertices in R are the same.

Let G = G(L ∪ R,E) be any bi-regular bipartite graph. For a function λ : [0, 1] × [0, 1] → [0, 1], we say
that G is a λ-sampler if, for every function F : L → [0, 1] with the average value Expx∈L[F (x)] ≥ µ and
any 0 < ν < 1, there are at most λ(µ, ν) · |R| vertices r ∈ R where Expy∈N(r)[F (y)] ≤ (1− ν)µ.

We will use the following properties of samplers (proved in [IJKW08] for the special case of ν = 1/2); for
completeness, we state them with the proofs. The first property says that for any two large vertex subsets
W and F of a sampler, the fraction of edges between W and F is close to the product of the densities of W
and F .

Lemma 2.2 ([IJKW08]). Suppose G = G(L ∪ R,E) is a λ-sampler. Let W ⊆ R be any set of measure at
least τ , and let V ⊆ L be any set of measure at least β. Then, for all 0 < ν < 1 and λ0 = λ(β, ν), we have
Prx∈L,y∈N(x)[x ∈ V & y ∈ W ] ≥ β(1 − ν)(τ − λ0), where the probability is for the random experiment of
first picking a random node x ∈ L uniformly at random, and then picking a uniformly random neighbor y of
x in the graph G.

Proof. We need to estimate the probability of picking an edge between V and W in a random experiment
where we first choose a random x ∈ L and then its random neighbor y. Since the graph G is assumed to be
bi-regular, this probability remains the same in the experiment where we first pick a random y ∈ R and its
random neighbor x ∈ N(y). The latter is easy to estimate using the sampling property of the graph G, as
follows. Consider the function F : L→ [0, 1] defined as

F (x) =

{
1 if x ∈ V ;
0 otherwise.

Since the measure of V is at least β, we have Expx∈L[F (x)] ≥ β. Let W ′ ⊆W be the subset of vertices that
have at least (1−ν)β fraction of their neighbors in V . In other words, W ′ contains those vertices r ∈ R such
that Expy∈N(r)[F (y)] ≥ (1− ν)β. Since G is a λ-sampler and W is of measure at least τ , we get that W ′ is
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of measure at least τ − λ0. Then, conditioned on picking a vertex y ∈ W ′, the probability that its random
neighbor is in V is at least (1− ν)β. The lemma follows.

The second property deals with edge-colored samplers. It basically says that removing some subset of
right vertices of a sampler yields a graph which (although not necessarily bi-regular) still has the following
property: Picking a random left node and then picking its random neighbor induces roughly the same
distribution on the edges as picking a random right node and then its random neighbor.

Lemma 2.3 ([IJKW08]). Suppose G = G(L ∪ R,E) is a λ-sampler, with the right degree D. Let W ⊆ R
be any subset of density at least τ , and let G′ = G(L ∪W,E′) be the induced subgraph of G (obtained after
removing all vertices in R \W ), with the edge set E′. Let Col : E′ → {red, green} be any coloring of the
edges of G′ such that at most ηD|W | edges are colored red, for some 0 ≤ η ≤ 1. Then, for all 0 < ν, β < 1
and λ0 = λ(β, ν), we have

Prx∈L,y∈NG′ (x)[Col({x, y}) = red] ≤ max{η/((1− ν)(1− λ0/τ)), β},

where the probability is for the random experiment of first picking a uniformly random node x ∈ L, and then
picking a uniformly random neighbor y of x in the graph G′.

Proof. For every x ∈ L, let dx be the degree of x in G′, and let ξ(x) be the fraction of red edges incident to
x in G′. The probability we want to estimate is exactly µ = Expx∈L[ξ(x)]. If µ ≤ β, then we are done. So
for the rest of the proof, we will suppose that µ > β.

Let W ′ ⊆ W be the subset of those vertices w where Expx∈N(w)[ξ(x)] ≥ (1 − ν)µ. (Here we use N(w)
to denote the neighborhood NG′(w) of w in G′, which is the same as NG(w) by the definition of G′.) Since
G is a λ-sampler and W has measure at least τ in R, we get that W ′ has measure at least 1 − λ0/τ in W .
Hence, we have ∑

y∈W
Expx∈N(y)[ξ(x)] ≥

∑
y∈W ′

Expx∈N(y)[ξ(x)] ≥ |W |(1− λ0/τ)(1− ν)µ. (1)

On the other hand,
∑
y∈W

(
D ·Expx∈N(y)[ξ(x)]

)
is simply the summation over all edges (x, y) in G′

where each edge (x, y) with x ∈ L contributes ξ(x) to the sum. Since the degree of each x is dx, each x ∈ L
contributes exactly dxξ(x), which is the number of incident red edges at x. Hence, the total sum is exactly
the number of red edges in G′, which is at most ηD|W | by assumption. It follows that∑

y∈W
Expx∈N(y)[ξ(x)] = (1/D)

∑
x∈L

dxξ(x) ≤ |W |η. (2)

Finally, comparing the bounds in (1) and (2), we conclude that µ ≤ η/((1− ν)(1− λ0/τ)).

We shall also need a generalization of Lemma 2.3 for the case of weighted graphs. Here we consider
bipartite graphs G = G(L ∪ R,E) whose edges are assigned weights in the interval [0, 1] satisfying the
following property: for every right vertex y ∈ R, all the edges incident on y are assigned the same weight.
Let w0, w1, . . . be the distinct weights of the edges of G, in decreasing order. The vertex set R of such a
weighted graph is naturally partitioned into subsets W0,W1, . . . , where Wi is the subset of all those vertices
in R whose incident edges have weight wi. Intuitively, such a partitioning of R defines a new induced graph
G′ where a vertex in Wi is present in G′ with probability wi. (In the setting of Lemma 2.3, there are two
sets W0 = W and W1 = R \W , with w0 = 1 and w1 = 0.)

Suppose the edges of G are partitioned into red and green edges. Let Red denoted the set of all red
edges, and, for every x ∈ L, let Redx denote the set of all red edges incident to x.

First, consider the experiment where one picks a vertex y ∈ R with probability proportinate to wi, where
y ∈ Wi, and then picks a uniformly random edge incident to y. What is the probability of picking a red
edge?
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Let wt : E → [0, 1] be the edge weight function for our graph G = G(L ∪ R,E), and let D be the right
degree of the graph G. For a fixed red edge e of G, the probability of choosing this edge in the random
experiment described above is

wt(e)∑
i≥0 |Wi|wi

· 1
D
,

where wt(e)/(
∑
i≥0 |Wi|wi) is the probability of choosing the vertex y ∈ R that is the end vertex of the edge

e, and 1/D is the probability of picking one of the D edges incident to y. The probability of picking some
red edge is then simply the sum of the probabilities of picking an edge e over all red edges e of G.

Next consider the following experiment. Pick a vertex x ∈ L uniformly at random, then pick an edge
e incident to x with probability proportinate to wt(e) (i.e., the probability wt(e)/(

∑
e′∈Ex wt(e

′))). The
probability ξ(x) of picking a red edge incident to x is then the sum of the probabilities of choosing an edge
e incident to x, over all red edges e incident on x. Finally, the overall probability of picking a red edge in
this experiment is simply the average Expx∈L[ξ(x)].

The next lemma basically says that, for sampler graphs G, the probabilities of picking a red edge in the
two experiments described above are almost the same. More precisely, we have the following.

Lemma 2.4. Suppose G = G(L ∪ R,E) is a λ-sampler with the right degree D. Let wt : E → [0, 1] be
the weight function over the edges of G such that, for each y ∈ R, the weights of the edges e ∈ Ey incident
to y are the same. Let w0, w1, . . . be the distinct weights of the edges of G, in decreasing order, and let
W0,W1, . . . be the partitioning of the vertex set R so that each Wi is the subset of all those vertices in R
whose incident edges have the weight wi. Suppose that W0 has the measure at least τ in the set R.

Let Col : E → {red, green} be any coloring of the edges of G. For each x ∈ L, let Redx be the set of
all red edges incident to x, and let Red be the set of all red edges in G. Suppose that the total weight of red
edges

∑
e∈Red wt(e) is at most ηD|R|, and let ξ(x) = (

∑
e∈Redx wt(e))/(

∑
e∈Ex wt(e)).

Then, for all 0 < ν, β < 1 and λ0 = λ(β, ν), we have

Expx∈L[ξ(x)] ≤ max

{
η|R|

(1− ν)(1− λ0/τ)
∑
i≥0 |Wi|wi

, β

}
.

Proof. Let µ = Expx∈L[ξ(x)]. If µ ≤ β, then we are done. So for the rest of the proof, we will suppose that
µ > β. We will bound the following sum from below, and from above:∑

i≥0

∑
y∈Wi

wi ·Expx∈N(y)[ξ(x)]. (3)

To bound it from below, let Bad ⊆ R be the subset of those vertices u where Expx∈N(u)[ξ(x)] < (1−ν)µ.
Since G is a λ-sampler, we get that Bad has measure at most λ0 in R. Each vertex y outside the set Bad
contributes at least wi(1−ν)µ to the sum (3) for y ∈Wi. Since w0 ≥ w1 ≥ . . . , the sum of such contributions
is minimized when all the bad vertices are in W0, i.e., Bad ⊆ W0 (otherwise, we can always make the sum
smaller by placing a bad vertex into W0 and creating a good vertex in some Wi for i > 0). Since W0 has
measure at least τ , we get that Bad has measure at most λ0/τ in W0, and so∑

i≥0

∑
y∈Wi

wi ·Expx∈N(y)[ξ(x)] ≥ (1− λ0/τ)|W0|w0(1− ν)µ+
∑
i≥1

|Wi|wi(1− ν)µ

≥ (1− λ0/τ)(1− ν)µ
∑
i≥0

|Wi|wi.

For the upper bound on the sum in (3), we use the definition of the ξ(x), change the order of summation,
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and finally use the definition of η to obtain the following:∑
i≥0

∑
y∈Wi

wi ·Expx∈N(y)[ξ(x)] = (1/D)
∑
y∈R

∑
x∈N(y)

ξ(x)wt((x, y))

= (1/D)
∑
x∈L

ξ(x)
∑
e∈Ex

wt(e)

= (1/D)
∑
x∈L

∑
e∈Redx

wt(e)

= (1/D)
∑
e∈Red

wt(e)

≤ |R|η.

Comparing the obtained lower and upper bounds, we conclude that

µ ≤ |R|η
(1− ν)(1− λ0/τ)

∑
i≥0 |Wi|wi

,

completing the proof of the lemma.

We conclude this section by showing that the direct product gives rise to a sampler. Consider the
following bipartite graph G = G(L ∪ R,E): the set of left vertices L is the set of n-bit strings {0, 1}n; the
right vertices R are all k-tuples of n-bit strings {0, 1}nk; for every y = (u1, . . . , uk) ∈ R, there are k edges
(y, u1), . . . , (y, uk) ∈ E.

Lemma 2.5. The graph G defined above is a λ-sampler for λ(µ, ν) = e−ν
2µk/2.

Proof. This is immediate from Lemma 2.1.

3 Proof of the Main Theorem

The proof is by contradiction. Suppose a solver C̄ solves the direct product puzzle P k with fewer than
(1−γ)δk mistakes for more than ε fraction of k-tuples of puzzle instances. We will describe a solver C which
solves the puzzle P with probability at least 1− δ, where the probability is over the internal randomness of
the solver and uniformly chosen α ∈ {0, 1}n.

We first give the proof under the simplifying assumptions that all puzzles are non-ambiguous (i.e., a
puzzle x uniquely determines the random tape α that generated x), and that we can test if a given k-tuple
of puzzle instances (x1, . . . , xk) is such that C̄(x1, . . . , xk) makes fewer than (1 − γ)δk mistakes. Later we
remove these assumptions.

3.1 Proof under simplifying assumptions

Let Good be the subset of k-tuples of puzzle instances where C̄ makes few mistakes. More precisely, Good
is the set of those k-tuples of random tapes (α1, . . . , αk) such that, for the corresponding k-tuple of puzzles
(x1, . . . , xk), the solver C̄ makes fewer than (1 − γ)δk mistakes. Since we assume that all puzzles are non-
ambiguous, we can define the set Good′ of all those k-tuples of puzzles (x1, . . . , xk) such that the k-tuple of
corresponding random tapes (α1, . . . , αk) is in G. That is, Good′ is the set of all k-tuples of puzzle instances
where the solver C̄ makes fewer than (1− γ)δk mistakes.2 Our second assumption is that we have an oracle
for testing membership in the set Good′.

Consider the following algorithm C:
2Note that the set Good′ does not make sense if one allows ambiguous puzzles, as the same instance x may be considered

solved correctly or incorrectly by C̄ depending on the particular random tape α used to generate that x.
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“On input x, choose k − 1 random tapes α1, . . . , αk−1 uniformly at random. Let x1, . . . , xk−1

be the puzzles corresponding to the chosen random tapes. Pick i ∈ [k] at random, and set
x̄ = (x1, . . . , xi−1, x, xi, . . . , xk−1). Test if x̄ ∈ Good′ (using the assumed membership oracle for
Good′). If x̄ ∈ Good′, then output C̄(x̄)i; otherwise repeat with new random α’s and i. If no
output is produced within 4 ln(20/γδ)/ε iterations, then output the error symbol ⊥.”

We want to analyze the success probability of solver C on a given input x. To this end, we need to argue
that (1) the probability of the timeout is small, and (2) conditioned on the output being different from ⊥,
it is a correct output with high probability (greater than 1− δ).

Recall the λ-sampler G defined at the end of Section 2.2. It has as its left vertices all possible n-bit
random tapes α, and as its right vertices all possible k-tuples of such tapes. For a left vertex α, its neighbors
in G correspond to all possible ways of embedding this α in a k-tuple, as done by our algorithm C. The
algorithm C times out on an input x corresponding to the random tape α iff it never samples a neighbor w
of α in G such that w ∈ Good. To bound the probability of timeout, we consider the set H ⊆ {0, 1}n of all
those left vertices α of G such that α has less than ε/4 fraction of its neighbors fall into the set Good.

Claim 3.1. The set H has density at most γδ/5.

Proof. Suppose that the density of H is greater than β = γδ/5. Let H ′ ⊆ H be any subset of H of density
exactly β. By our assumption, we have that Prα∈L,w∈N(α)[α ∈ H ′ & w ∈ Good] < βε/4. On the other
hand, by Lemma 2.2 we get that the same probability is at least β(ε − λ0)/3 for λ0 = λ(β, 2/3). This is a
contradiction since λ0 ≤ ε/4 from the assumption of the theorem.

Claim 3.2. For every α 6∈ H and the puzzle x corresponding to that random tape α, we have Pr[C(x) =
⊥] ≤ γδ/20, where the probability is over the internal randomness of C.

Proof. By the definition of H, we get that the probability of timeout on any given α 6∈ H is at most
(1− ε/4)4 ln(20/γδ)/ε ≤ γδ/20.

Next we bound the probability of C making a mistake, conditioned on C outputting something other than
⊥. First we observe that C produces a definite answer on an input x corresponding to the random tape α
exactly when it samples a neighbor w of α in the graph G such that w ∈ Good. Consider the subgraph
G′ of G induced by removing all right vertices of G except those in Good. For each edge in G′ between
w = (α1, . . . , αk) ∈ R and αi ∈ L, color this edge red if C̄(x1, . . . , xk)i is wrong, and color it green otherwise.
Then the requisite conditional probability of C making a mistake is exactly Prα∈L,w∈NG′ (α)[(α,w) is red].

Claim 3.3. Prα∈{0,1}n [C(x) is wrong | C(x) 6= ⊥] ≤ δ − γδ/4, where x is the puzzle corresponding to the
random tape α.

Proof. By the discussion above, the required conditional probability is exactly Prα∈L,w∈NG′ (α)[(α,w) is red].
Observe that, by the definition of the set Good, the number of red edges in the graph G′ is at most (1 −
γ)δk|Good|. By Lemma 2.3 applied to G′ with η = (1 − γ)δ, β = δ/2, and ν = γ/2, we get that this
probability is at most max{(1 − γ)δ/((1 − γ/2)(1 − λ0/ε)), δ/2}, where λ0 = λ(δ/2, γ/2). This is at most
δ − γδ/4 if λ0/ε < γ/4.

Finally, we have

Prα∈{0,1}n [C(x) is wrong] =
1
2n
∑
α∈H

Pr[C(x) is wrong] +
1
2n
∑
α 6∈H

Pr[C(x) is wrong]. (4)

The first term on the right-hand side of (4) is at most γδ/5 by Claim 3.1. For the second term, we upperbound
Pr[C(x) is wrong] by Pr[C(x) is wrong | C(x) 6= ⊥] + Pr[C(x) = ⊥]. We know by Claim 3.2 that, for each
α 6∈ H, Pr[C(x) = ⊥] ≤ γδ/20. Thus we get that Prα∈{0,1}n [C(x) is wrong] is at most

γδ/5 + γδ/20 +
1
2n
∑
α6∈H

Pr[C(x) is wrong | C(x) 6= ⊥] ≤ γδ/4 + Prα∈{0,1}n [C(x) is wrong | C(x) 6= ⊥],

which is at most δ by Claim 3.3.
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3.2 Proof without simplifying assumptions

Here we explain how to prove our main theorem without any simplifying assumptions. Since we cannot test
membership in the set Good of k-tuples where C̄ makes fewer than (1 − γ)δk errors, we will make a “soft”
(probabilistic) decision of how likely a given k-tuple x̄ is in Good based on the number of correct answers of
C̄(x̄) in those k − 1 positions where we know the α’s (since we have generated them ourselves). The fewer
errors we see, the more likely we are to believe the answer of C̄(x̄) for the position where the real input x
was placed.

More precisely, we will use the following subroutine TRS (Trust Reducing Strategy):

“On inputs x̄ = (x1, . . . , xk), i ∈ [k], and αj ’s corresponding to the xj ’s for j ∈ [k] \ {i}, compute
the number err of errors made by C̄(x̄) in positions other than i, that is, err = |{j ∈ [k] \ {i} |
¬R((xj , αj), C̄(x̄)j)}|. Set ∆ = err − (1 − γ)δk. If ∆ ≤ 0, then output C̄(x̄)i with probability
1. Otherwise, for the parameter ρ = 1− γ/10, output C̄(x̄)i with probability ρ∆, and output ⊥
with probability 1− ρ∆.”

Now our new randomized algorithm C is as follows:

“On input x, choose k − 1 random tapes α1, . . . , αk−1 ∈ {0, 1}n uniformly at random. Let
x1, . . . , xk−1 be the puzzles corresponding to the chosen random tapes. Pick i ∈ [k] at random,
and set x̄ = (x1, . . . , xi−1, x, xi, . . . , xk−1). Run the subroutine TRS on the inputs x̄, i, and
α1, . . . , αk−1. If TRS returns a value y 6= ⊥, then output y; otherwise repeat with new random
α’s and i. If no output is produced within 4 ln(20/γδ)/ε iterations, then output ⊥.”

We will analyze this algorithm C using the λ-sampler G defined at the end of Section 2.2. Recall that
G has as its left vertices all possible n-bit random tapes α, and as its right vertices all possible k-tuples of
such tapes. For a left vertex α, its neighbors in G correspond to all possible ways of embedding this α in a
k-tuple.

First we will bound the probability of timeout of C. Let x be an input corresponding to the random tape
α. The k-tuple x̄ = (x1, . . . , xi−1, x, xi, . . . , xk−1) of puzzles constructed by the algorithm C corresponds to
the k-tuple ᾱ = (α1, . . . , αi−1, α, αi, . . . , αk−1) of random tapes. If ᾱ ∈ Good, then the TRS subroutine will
return C̄(x̄)i 6= ⊥ with probability 1. Hence, the probability of timeout on x is at most the probability that
C never samples a neighbor ᾱ ∈ Good of α in the graph G. As in the previous subsection, we consider the
set H ⊆ {0, 1}n of all those left vertices α of G such that α has less than ε/4 fraction of its neighbors fall
into the set Good. We get the following analogs of Claims 3.1 and 3.2, with exactly the same proofs.

Claim 3.4. The set H has density at most γδ/5.

Claim 3.5. For every α 6∈ H and the puzzle x corresponding to that random tape α, we have Pr[C(x) =
⊥] ≤ γδ/20, where the probability is over the internal randomness of C.

Next we analyze the probability of C outputting a wrong answer, conditioned on its output being some-
thing other than ⊥. For each edge ((α1, . . . , αk), αi) of the graph G, we color this edge green if C̄(x1, . . . , xk)i
is correct, and we color it red otherwise.

Consider the following random experiment E :

“Pick a random α ∈ L, and its random incident edge e = (α, ᾱ) in G, for ᾱ containing α in
position i ∈ [k]. Let err be the number of errors made by C̄(x̄) in positions other than i, and let
∆ = err − (1− γ)δk. If ∆ ≤ 0, output the edge e. Otherwise, output e with probability ρ∆ (for
ρ = (1− γ/10)), and output ⊥ with probability 1− ρ∆.”

For each α ∈ {0, 1}n and the puzzle x corresponding to the random tape α, we have

Pr[C(x) is wrong | C(x) 6= ⊥] = Pr[E outputs red edge incident to α | E outputs some edge incident to α],
(5)
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where the first probability is over internal randomness of C, and the second probability is over the random
choices of E for the fixed α (i.e., over the random choice of an edge e incident to α, and the random choice
whether e is output).

Rather than analyzing the experiment E , however, we will consider another experiment that is the same
as E except that err is defined as the total number of errors made by C̄(x̄) in all positions (i.e., including
the position i). That is, we consider the following experiment E ′:

“Pick a random α ∈ L, and its random incident edge e = (α, ᾱ) in G, for ᾱ containing α
in position i ∈ [k]. Let err be the number of errors made by C̄(x̄) in all positions, and let
∆ = err − (1− γ)δk. If ∆ ≤ 0, output the edge e. Otherwise, output e with probability ρ∆ (for
ρ = (1− γ/10)), and output ⊥ with probability 1− ρ∆.”

Claim 3.6. For each edge e of G, we have

Pr[E ′ outputs e] ≤ Pr[E outputs e] ≤ (1/ρ)Pr[E ′ outputs e].

Proof. Let p = Pr[E outputs e], and let p′ = Pr[E ′ outputs e]. If edge e is green or ∆ ≤ 0, then p′ = p. If e
is red and ∆ > 0, then p′ = ρp. In either case, we have p′ ≤ p and p ≤ (1/ρ)p′, as required.

As a corollary of Claim 3.6, we get the following.

Claim 3.7. For each α ∈ {0, 1}n and the puzzle x corresponding to α, we have that

Pr[E outputs red edge incident to α | E outputs some edge incident to α] ≤
(1/ρ) ·Pr[E ′ outputs red edge incident to α | E ′ outputs some edge incident to α].

Proof. The proof is by Claim 3.6 and the definition of conditional probability.

Now we can prove the following analog of Claim 3.3.

Claim 3.8. Prα∈{0,1}n [C(x) is wrong | C(x) 6= ⊥] ≤ δ − γδ/4.

Proof. By (5) and Corollary 3.7, we get that Prα∈{0,1}n [C(x) is wrong | C(x) 6= ⊥] is at most

(1/ρ) ·Expα∈L[Pr[E ′ outputs red edge incident to α | E ′ outputs some edge incident to α]]. (6)

To upperbound the conditional probability of getting a red edge in the experiment E ′, we assign weights
to the edges of our graph G = G(L ∪ R,E) as follows: An edge (α, ᾱ) ∈ E between α ∈ L and ᾱ ∈ R gets
the weight wt(e) = ρ∆, where ∆ is as in the definition of the experiment E ′ (i.e., ∆ is the total number of
errors of C̄(x̄) minus (1− γ)δk).

For each α ∈ L, let Redα denote the set of all red edges incident to α, and let

ξ(α) =

∑
e∈Redα wt(e)∑
e∈Eα wt(e)

,

where Eα denotes the set of all edges incident to α. The expectation in (6) is exactly µ = Expα∈L[ξ(α)].
Let Red be the set of all red edges in G, and let η = (1/k|R|)

∑
e∈Red wt(e). Let us partition the set

({0, 1}n)k of k-tuples into the subsets Goodi, for i ≥ 0, where Good0 = Good, and for each i ≥ 1, Goodi
contains all those k-tuples ᾱ ∈ R where C̄(x̄) makes exactly ((1− γ)δk + i) errors.

Apply Lemma 2.4 to G, the partitioning R = ∪i≥0Goodi with the corresponding weights ρ0, ρ1, . . . , and
the measure τ of Good0 being at least ε. For a parameter β (to be determined later) and λ0 = λ(β, ν), we
get that µ is at most the maximum of β and the following expression:

|R|η
(1− ν)(1− λ0/ε)

∑
i≥0 |Goodi|ρi

, (7)
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By the definition of the sets Goodi, we get that η ≤ (1/k|R|)
∑
i≥0 |Goodi|((1 − γ)δk + i)ρi. Using this

bound on η, we can upperbound the expression in (7) by∑
i≥0 |Goodi|((1− γ)δ + (i/k))ρi

(1− ν)(1− λ0/ε)
∑
i≥0 |Goodi|ρi

. (8)

For t = γδk/4, let us split the sum in the numerator of (8) into two sums: for 0 ≤ i ≤ t and for i > t. We
can bound each of these two sums as follows:

t∑
i=0

|Goodi|((1− γ)δ + (i/k))ρi ≤ ((1− γ)δ + t/k)
t∑
i=0

|Goodi|ρi ≤ (1− 3γ/4)δ
∑
i≥0

|Goodi|ρi,

and ∑
i>t

|Goodi|((1− γ)δ + (i/k))ρi ≤ ρt|R|.

Plugging these bounds into (8), and recalling that |Good0| ≥ ε|R|, we upperbound (8) by

1
(1− ν)(1− λ0/ε)

(
(1− 3γ/4)δ +

ρt|R|∑
i≥0 |Goodi|ρi

)
≤ (1− 3γ/4)δ + ρt/ε

(1− ν)(1− λ0/ε)
.

Finally, by (6), we get

Prα∈{0,1}n [C(x) is wrong | C(x) 6= ⊥] ≤ max
{

(1− 3γ/4)δ + ρt/ε

ρ(1− ν)(1− λ0/ε)
,
β

ρ

}
,

which is at most δ−γδ/4, for ρ = 1−γ/10, β = (27/40)δ, ν = (3/10)γ, λ0/ε ≤ γ/20 and ρt/ε ≤ γδ/100.

Now we finish the proof of our main theorem.

Proof of Theorem 1.1. The proof follows from Claims 3.4, 3.5, and 3.8 in exactly the same way as the proof
of the main theorem under the simplifying assumptions, given at the end of Section 3.1.

Remark 3.9. Note that in the proof of the main theorem, we implicitly assumed that the solver C̄ is
deterministic. The proof can be generalized for a randomized solver C̄ by trying to fix the randomness of C̄
and evaluating the constructed circuit C by sampling.

4 Open problems

While the results here are fairly general, there are some obvious possible extensions. First, can similar results
be proved for other domains, such as public-coin protocols [PV07]. Also, our bounds on the adversary’s
success probability, although asymptotically exponentially small, are quite weak when applied to concrete
problems such as actual CAPTCHA protocols with reasonable numbers of repetitions. Can the bounds be
improved quantitatively (getting smaller constant in the exponent for ε in Theorem 1.1)? Finally, we would
like to find more applications of our results, for example, to such problems as making strong secret agreement
protocols from weak ones [Hol05].
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