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Abstract

Random number generators (RNGs) are consistently a

weak link in the secure use of cryptography. Routine cryp-

tographic operations such as encryption and signing can

fail spectacularly given predictable or repeated random-

ness, even when using good long-lived key material. This

has proved problematic in prior settings when RNG imple-

mentation bugs, poor design, or low-entropy sources have

resulted in predictable randomness. We investigate a new

way in which RNGs fail due to reuse of virtual machine

(VM) snapshots. We exhibit such VM reset vulnerabilities

in widely-used TLS clients and servers: the attacker takes

advantage of (or forces) snapshot replay to compromise

sessions or even expose a server’s DSA signing key. Our

next contribution is a backwards-compatible framework for

hedging routine cryptographic operations against bad ran-

domness, thereby mitigating the damage due to randomness

failures. We apply our framework to the OpenSSL library

and experimentally confirm that it has little overhead.

1. Introduction

The security of routine cryptographic operations such as

encryption, key exchange, and randomized signing rely on

access to good (unpredictable, fresh) randomness. Unfortu-

nately, the random number generators (RNGs) used in prac-

tice frequently fail. Examples stem from poorly designed

RNGs [28, 32, 35], implementation bugs [13, 51], untimely

exposure of randomness [17], and even the inability to find

sufficient entropy in a system’s environment [36]. Since

deployed cryptographic routines provide no security given

bad randomness (even when using good long-lived keys),

the attacks that result from RNG failure are spectacular

[13, 16, 32, 35, 53].

In this work, we first show a new way in which deployed

RNGs fail, due to virtual machine (VM) resets. Beyond

their relevance to RNG failures, the vulnerabilities are also

interesting because they introduce a potentially-widespread

class of practical problems due to virtualization technolo-

gies. Our second contribution is a general and backwards-

compatible framework to hedge against the threat of ran-

domness failures in deployed cryptographic algorithms. We

discuss each contribution more in turn.

VM reset vulnerabilities. Virtualization technologies en-

able significant flexibility in handling the state of guest sys-

tems (an operating system, user applications, and data). In

particular, virtual machine (VM) snapshots, i.e. copies of

the state of the guest, can be used to replicate, backup, trans-

fer (to another physical system), or reset (to a prior state)

the guest. Snapshots are one reason virtualization is trans-

forming numerous areas of computing. However, Garfinkel

and Rosenblum [31] suggest that, in theory, snapshots might

lead to security problems due to reuse of security-critical

state. Namely, reusing a VM snapshot might lead to (what

we call) VM reset vulnerabilities. But no insecurities have

been reported for real systems, leaving open the question of

whether reset vulnerabilities are a practical problem.

We answer this question by revealing exploitable VM

reset vulnerabilities within popular software. Our attacks

are against TLS [8] implementations used for secure web

browsing and work when a victim VM runs twice from the

same snapshot. We investigate both TLS clients and servers,

presenting session-compromise attacks against clients in the

Firefox and Chrome web browsers and secret-key recov-

ery attacks against the Apache HTTPS server. The latter is

particularly damaging — an attacker can remotely extract

a server’s DSA secret key. With this key, the attacker can

impersonate the server. We exhibit exploits when the victim

is run within either VMWare [12] or VirtualBox [10], two

popular VM managers.

The attacks work because the VM resets lead to crypto-

graphic operations (here, key exchange and signing) using

the same randomness more than once. These cryptographic

operations, in turn, fail to provide any security given re-



peat randomness. One conceptually simple solution, then,

is to ensure that applications sample sufficiently fresh ran-

domness immediately before use. Unfortunately, there are

lurking complexities to overcome. Besides the difficulty of

ensuring every RNG-using application is updated, there is

the more subtle problem of where to find good randomness

after VM resets. For example, the state of traditional RNGs

(e.g., Linux’s /dev/random) is also reset with the rest of the

guest. We provide more discussion of systems solutions in

the body, but leave the bulk of this task to future work.

Finally, we suspect that the VM reset vulnerabilities we

show are indicative of further issues. An important open

question is whether other practical insecurities arise due to

VM resets.

Hedging deployed cryptography. The attacks above are

symptomatic of the widespread fragility of cryptographic

operations to repeated or predictable randomness. Because

many cryptographic operations fundamentally rely on good

randomness to achieve the desired security level, repairing

RNGs is the only full solution. However, the complexity of

RNG design, the frequency with which RNG failures occur,

and the significant damage that results all suggest that cryp-

tography should be designed so that bad randomness has as

little ill effect as possible.

One potential approach is to implement some form of

hedged cryptography, considered in various ways in [19, 37,

46, 48]. The general idea is that routine cryptographic oper-

ations should be designed so that, given good randomness,

they provably meet traditional security goals and, given

bad randomness, they nevertheless provably achieve some

meaningful security level. While not everywhere eliminat-

ing the need for good randomness, hedging against bad ran-

domness can significantly mitigate the threat of RNG fail-

ure. Unfortunately, existing approaches only treat specific

primitives such as public-key encryption [19, 52] or sym-

metric encryption [37, 46, 48] and only treat specific, dis-

parate kinds of RNG failures. In this work we seek an ap-

proach that is fast, conserves existing security when ran-

domness is good, works with arbitrary deployed algorithms,

and can boost security in the face of arbitrary types of RNG

failures.

We give a framework for hedging cryptographic opera-

tions that achieves these goals. Our starting point is tech-

niques from [19, 52], which we show can be straightfor-

wardly combined to be applicable to arbitrary cryptographic

primitives. Briefly, an operation is replaced by a hedged

version with equivalent functionality. The hedged ver-

sion preprocesses RNG-derived randomness together with

other inputs (messages, keys, etc.) with HMAC to provide

(pseudo)randomness for the cryptographic operation. The

modifications are simple. Even so, by changing the cryptog-

raphy we can prove that important schemes are more secure

in the face of various kinds of randomness failure.

We apply our framework to the latest OpenSSL code

base, which doubles as a cryptographic library used by

many applications and as a widely used implementation of

the TLS protocol. Benchmarking the hedged version of the

library indicates that overhead is very low. Because hedg-

ing does not impact functionality, our library interoperates

transparently with existing TLS implementations. We are

currently in the process of preparing our implementation

for public release, which will allow immediate deployment

with the corresponding security benefits.

2. Random Number Generation and Threat

Models

There are many methods for generating cryptographi-

cally strong random numbers. We do not go into significant

detail regarding particular implementations. See [36, 43]

for details regarding some platform-specific random num-

ber generators. Instead we give an abstract model of random

number generation which already suffices for discussing

threats and attacks. We will fill in further details when nec-

essary.

The task of a cryptographic random number generator

(RNG) is to provide uniform, private bits to applications.

We find it convenient to view an RNG as a stack. The

first layer is the entropy layer where entropy is generated.

Here sources of (hopefully) unpredictable events occur in

a manner that can be sampled. Examples include tempera-

ture variations, clock drift, interrupt timings, mouse move-

ments or keyboard clicks, and network packet arrivals. We

view the entropy layer not as an actual software or hardware

system, but rather as an encapsulation of the physical pro-

cesses from which entropy is harvested. The second layer

is the sampling layer which samples from the entropy layer

to measure events and generate digital descriptions of them.

This layer also attempts to extract uniform random bits from

the unpredictable data and maintains a pool of such bits.

The uniform bits are then provided to applications requir-

ing randomness in the consuming layer.

We note that, crucially, the consuming layer may it-

self consist of further sequences of RNG-related systems.

For example, in typical operating systems the kernel imple-

ments the sampling layer, a cryptography library consumes

kernel-supplied randomness and also provides it to further

applications. Note that every layer above the first poten-

tially stores randomness internally in state. Looking ahead,

this aspect of RNG stacks will be important in the context

of reset attacks, which abuse reused state. Security requires

that each layer ensures distinct requests (even ones made in

parallel) are answered with fresh randomness.

Threat models. There exist numerous ways in which an

RNG stack might fail or be tampered with by a dedicated



attacker. For the purposes of threat modeling, however, we

can loosely categorize randomness failures by the resultant

quality of randomness as seen from the point of view of an

application.

(1) Fresh randomness: An application is always provided

new, private, uniform bits.

(2) Reused randomness: An application is provided private,

uniform bits, but these bits might have been provided to

the application before.

(3) Exposed randomness: An application is provided uni-

form bits but attackers later learn these bits.

(4) Predictable randomness: An application is provided

random bits that are predictable by an adversary.

(5) Chosen randomness: An application is provided

adversarially-chosen random bits.

For simplicity we will sometimes refer to fresh randomness

as good and any of the four other kinds of randomness as

bad. Our threat model is potentially malicious failure (at

any level) of the RNG stack when performing routine ran-

domized cryptographic operations, for example encrypting

a message, signing a message, or performing key exchange.

Randomness vulnerabilities lead to applications using one

of the four kinds of bad randomness.

Previous failures. We classify previous randomness vul-

nerabilities into these threat models. We are unaware of

any reports on vulnerabilities leading to reused randomness

that didn’t also lead to predictable randomness. Becherer

et al. recently describe a possible vulnerability on Amazon

EC2 [17] that leads to exposed randomness. Due to the ar-

chitecture of EC2, an attacker might learn the initial state

of a victim virtual machine’s RNG. They conjecture (but

provide only anecdotal evidence) that one might use this in-

formation to recreate cryptographic keys generated by the

victim.

Examples of vulnerabilities leading to predictable ran-

domness abound. Wagner and Goldberg exhibit session

compromise attacks against SSLv2 because clients used

predictable randomness for session keys [32]. Gutterman

et al. point out that some systems may not have access to a

sufficiently rich entropy layer, for example network routers

without disks [36]. Gutterman and Malkhi discuss pre-

dictable randomness vulnerabilities in Java session identi-

fiers [35]. Dorrendor et al. [28] point out that the Window’s

kernel RNG stored randomness in a way that is accessible

to unprivileged programs. Woolely et al. uncovered a bug

in the FreeBSD RNG that led to no entropy for several min-

utes after a reboot [51]. Perhaps the most spectacular exam-

ple thus far is the Debian OpenSSL vulnerability, originally

discovered by Bello [13]. Here a bug was introduced in the

OpenSSL crypto library that tragically rendered impotent

the RNG. Mueller [42] shows how to abuse the ensuing pre-

dictable randomness to recover long-lived TLS secret keys.

Abeni et al. [16] and Yilek et al. [53] show how to abuse

the predictable randomness to perform session compromise

attacks.

3. VM Reset Vulnerabilities Affecting TLS

In this section we explore virtual machine (VM) reset

vulnerabilities. These arise when applications’ security-

critical state is captured by a VM snapshot and starting the

VM repeatedly from the snapshot leads to security prob-

lems. The VM reset vulnerabilities we consider are due

to cryptographic randomness being cached by applications

and caught in a snapshot. Running multiple times from the

snapshot results in cryptographic operations consuming re-

peated randomness, and in turn, failing to provide security.

Virtualization and snapshots. Modern virtual machine

monitors (VMMs) allow physical multiplexing of hardware

resources between numerous guest operating systems, each

run within a virtual machine (VM). Virtualization technolo-

gies have become almost ubiquitous. Consumers use VMs

for home PC security, for example to contain malware infec-

tions. Businesses use virtualization to more efficiently man-

age computing infrastructure. The (so-called) cloud com-

puting paradigm is powered by virtualization.

An important feature of almost all modern VMMs is the

ability to take VM snapshots. A snapshot is a copy of the

entire state of a VM, including active memory. This al-

lows restarting the VM exactly in the state at which the

snapshot was taken. VMWare [12], VirtualBox [10], and

Virtual PC [11] all include snapshot mechanisms and ad-

vertise them as a core feature. Some VMMs offer a more

limited volume snapshot, which is a copy of the persistent

state (volumes) of a VM (but not active memory). Restart-

ing from a volume snapshot requires booting the guest OS

from the persistent state. Modern third-party cloud comput-

ing services such as Amazon EC2 [3], Microsoft Azure [7],

Mosso Rackspace [1] all rely on volume snapshots to allow

users of the service to save convenient server configurations

for later use.

The attacks we describe below work against TLS [9]

clients and servers when run multiple times from full snap-

shots. We did not investigate vulnerabilities due to volume

snapshots; the particular vulnerabilities we found would not

seem to carry over.

3.1. TLS Client Vulnerabilities

Recall that TLS is used to secure HTTP connections over

the Internet. Thus, TLS protects the security of online bank-

ing, shopping, and other sensitive traffic. Every popular

web browser therefore includes a TLS client, which is used

to negotiate a shared secret, called a session key, between it



and the remote HTTP server. The most prevalent [53] mode

for establishing a session key is RSA key transport. Here

the client chooses a secret value, called the premaster secret

(PMS), encrypts it under the server’s public RSA key, and

then sends the resulting ciphertext to the server. The sym-

metric session keys used to secure the rest of the session are

then derived from the PMS and two other values that are

sent in the clear.

In abstract, a VM reset vulnerability could arise if the

PMS, or the randomness used to create it, is generated be-

fore a snapshot and consumed upon resumption after the

snapshot. This vulnerability would lead to an immediate

compromise of sessions if the same PMS is sent to multiple

different servers.

Before assessing whether this can occur in practice, we

first ask: Why might a user run their browser in a virtual

machine? Security experts recommend users do their web

browsing within a VM to increase security. The idea is that

if the browser has a vulnerability and a malicious site ex-

ploits it, the damage is contained to the VM. A user can

revert to a previous snapshot taken before the browser and

VM were compromised to undo the effects of any malware.

We performed experiments on a variety of browsers on

both Linux andWindows to determine if there is a real prob-

lem. There is. Our results are summarized in Figure 1. We

explain the results in detail below.

Experimental setup. We used two Apache web servers

(call them server1 and server2) running on two separate

physical machines. The servers used an instrumented ver-

sion of OpenSSL that, upon receipt of the client’s key ex-

change message in a TLS session using RSA key transport,

would decrypt the premaster secret and write it to a file.

Each server was given an RSA certificate signed by our

own certificate authority (CA). We ran the various browsers

(listed in Figure 1) within the indicated operating systems

as guests inside a VM running in either VMWare 1.0.10

or VirtualBox 3.0.12. The physical host ran Ubuntu 8.04

Desktop. The client browsers, excepting Safari inWindows,

were configured to accept our CA. This ensured that, upon

visiting one of our servers, a browser in the guest OS would

not complain about a certificate signed by an untrusted CA.

(For Safari, we ended up just clicking “continue” when pre-

sented with a warning about an untrusted certificate.)

Experiments. We start with the following test sequence.

(1) Reboot the OS.

(2) Load the browser.

(3) Take a snapshot of guest in this state.

(4) Reset the VM.

(5) Navigate browser to server1.

(6) Reset the VM.

(7) Navigate browser to server2.

For each VM manager OS combination, steps (1-3) were

performed once followed by 3 iterations of steps (4-7) for

each browser. For Chrome on Linux, we also ran a separate

test sequence where step (2) was changed to

(2a) Load the browser, navigate to an HTTPS url, and then

navigate to a blank page.

The results were consistent between the two VM man-

agers, meaning the VMM used had no impact on client be-

havior. For Firefox on Windows or Linux, the same PMS

was sent to both servers in all 3 trials. If the user caused 100

mouse events (e.g., moved the mouse 100 pixels) between

steps (4) and (5) or (6) and (7) then distinct PMS values

were sent to the servers. This is because Firefox folds new

entropy into the RNG every 100 mouse events. For Chrome

on Linux, when step (2a) was used then the same PMS was

sent to both servers in all 3 trials. When step (2) was used,

distinct PMS values were sent to the two servers.

On Windows, all browsers except Firefox always sent

distinct PMS values to both servers. We note however that

on Windows, the same PMS value was sent to the same

server in many of the trials. While this does not admit an ob-

vious attack, it violates the TLS specification. For example,

on IE 6.0 and VMWare, 2 out of the 3 PMS values sent to

server1 were the same and 2 out of the 3 PMS values sent to

server2 were the same. We note that all the browser/VMM

combinations showed this problem; for Chrome in Win-

dows, it did not even matter whether or not step (2a) or (2)

was used.

3.2. TLS Server Vulnerabilities

We turn our attention to TLS servers. We target TLS

servers using authenticated Diffie-Hellman key exchange

when the digital signature scheme used is DSA. Ignor-

ing numerous (but not really relevant) details, the protocol

works as follows. The client sends a nonce of its choos-

ing to the server. The server chooses a random y, computes

gy , and uses DSA to sign gy together with session state in-

cluding the client nonce. Now, if the server uses the same

randomness to sign in two different sessions, an attacker

who knows the messages signed and sees the resulting sig-

natures can extract the server’s DSA signing key. This at-

tack is well-known; see Appendix A for details.

A VM reset vulnerability could therefore arise if running

a server multiple times from a snapshot led to the same ran-

domness being used by DSA. This situation would occur,

for example, if an HTTP server seeds its RNG at startup

and uses the RNG (without new seeding) to generate ran-

domness when handling a new connection. If a snapshot of

the server is taken after startup, then the RNG’s state would

be captured. Reuse of the snapshot could lead to the same

randomness being consumed by DSA.

If real, such attacks would be particularly threatening



TLS Client Guest OS Same PMS to diff. sites? Same PMS to same site? Comments

Firefox 3.5 Windows Always Always Mouse moves < 100 pixels

Chrome 3.0 Windows Never Sometimes -

IE 6.0 Windows Never Sometimes -

Safari 4.0 Windows Never Sometimes -

Firefox 3.0 Ubuntu Always Always Mouse moves < 100 pixels

Chrome 4.0 Ubuntu Always Always Visit one HTTPS site before snapshot

Figure 1. Summary of our TLS client attacks. We performed all of the experiments on both VMWare
Server version 1.0.10 and VirtualBox version 3.0.12 and observed the same behavior. Ubuntu refers
to version 8.04 (Hardy) Desktop, Windows refers to XP Professional with Service Pack 2.

due to the ever-increasing use of virtualization to man-

age servers. For example, cloud computing services such

as EC2 (popular for hosting HTTP servers) utilize volume

snapshots to store customer server configurations for rapid

deployment. Progressing to full snapshots that include ac-

tive memory could make provisioning of VMs even faster.

In other settings, snapshots are often suggested as a simple

mechanism for fast server crash recovery.

We therefore investigate whether servers are vulnera-

ble. We focus on Apache using mod ssl, the most widely-

used HTTPS web server software. Below we describe how

Apache generates randomness and then experimentally val-

idate that, in fact, VM reset vulnerabilities can be exploited

by an attacker to extract a server’s DSA secret key.

The Apache + mod ssl RNG. Apache uses the OpenSSL

cryptographic library for its RNG and TLS implementation.

On Apache startup, the main process seeds the OpenSSL

RNG from various entropy sources. Which sources to use

can be specified in the Apache configuration file. By de-

fault, Apache only uses time (seconds since the Epoch),

process ID, and a portion of the runtime stack to seed the

RNG; this is referred to as “built-in” in the configuration

file. The OpenSSL RNG will also seed itself from a variety

of sources depending on how it is configured; these sources

usually include /dev/random or /dev/urandom on

Unix-based systems. Apache then forks off into child pro-

cesses that will actually handle the incoming HTTP and

HTTPS requests. At this point each child process has its

own copy of the now-initialized RNG state.

When an HTTPS request comes in, Apache assigns a

child process to handle it. Before handling the process, the

child adds more entropy to its RNG. Here what is added

again depends on the Apache configuration, which by de-

fault is set to “built-in”, meaning only the time, process ID,

and some of the runtime stack are added to the RNG before

the request is handled. The nature of our attack is such that

only these new additions affect whether randomness will be

repeated between two reverts. In other words, if we can

connect to a server twice run from the same snapshot and

the time, pid, and runtime stack are the same in both cases,

the server will use the same randomness for both sessions.

Experiments without Clock Synchronization. Because

time is added to the RNG, it is clear that the server’s clock

plays a crucial role in whether an attack could be success-

ful. Specifically, if the server resynchronizes its clock after

starting execution from a snapshot but before an adversary

can connect to it, then the RNG will never supply the same

value twice. Thus, as a first step, we experiment with VMs

that do not perform guest clock synchronization.

We set up a default installation of an Ubuntu 8.04 Hardy

desktop guest OS inside VMWare Server. Here the guest

does not synchronize its clock. (If one additionally in-

stalls VMWare Tools, which are guest utilities supplied

by VMWare, then the guest defaults to synchronizing its

clock.) On the guest, we also set up OpenSSL 0.9.8k and

the latest version of Apache web server with mpm-prefork

(i.e., unthreaded) and using the default configuration. The

only changes we made to the configuration file were to point

the server at a DSA key and certificate.

We then performed the following steps. We rebooted the

guest VM, started the web server, paused the VM, and took

a snapshot. Then we repeatedly attempted to start the VM

from the snapshot and have a client connect to the server

at exactly the same time (as read on the guest’s clock). We

did this by setting a client machine physically next to the

server’s host machine, and having one person watch for the

clock on the guest VM to tick to the next minute after the

snapshot was taken. Immediately, that person executed the

openssl s_client command on the client machine to

initiate a DSA-authenticated key exchange with the server.

Somewhat surprisingly, this worked. The randomness

used by the server was repeated. We observed repeated ses-

sion IDs (generated using the RNG), and repetitions of the

randomness used to sign with DSA. We tried many more

times with similar success. Apparently the same child PID

and stack contents were used each time to generate the ran-

domness, and it was easy for the single operator to get the

timing right.



VMM Time Sync Restart? # Session ID pairs # DSA extract pairs

1 VMWare no no 6/10 6/10

2 VMWare no yes 3/10 1/10

3 VBox yes no 10/10 10/10

4 VBox yes yes 10/10 10/10

5 VMWare yes no 0/10 0/10

6 VMWare yes yes 4/10 3/10

Figure 2. Summary of Server attacks. Each row corresponds to five trials. The secondtolast
column reflects how many pairs of trials (out of a possible ten) contained sessions using the same
session IDs. The last column reflects how many pairs of trials contained sessions using the same
randomness for DSA signing.

Our next step was to try to automate the attack to see if

it would work remotely. We worked under the assumption

that after a reset, the VM would usually take about the same

amount of time to start servicing HTTPS requests. Thus,

our attack strategy was to repeatedly attempt to connect to

the server (starting around the time we knew the reset oc-

curred) with the hope of achieving a successful connection

at the very moment the server started answering requests.

If after two different resets the server takes the same num-

ber of seconds to start answering, then the attack should

succeed. To test this, we created a script that attempted to

connect to the server once every 0.1 seconds and recorded

any session data. We then performed five trials consisting

of the following steps using VMWare 1.0.10 as our VMM,

Ubuntu 8.04 Desktop as our host and guest OS, and Apache

2.2.14 mpm-prefork with OpenSSL 0.9.8k:

(1) Start the VM from the snapshot.

(2) Start the attack script.

(3) Stop the script after a few seconds of successful con-

nections.

We did this both when restarting the host physical machine

before each trial and restarting before only the first trial.

We call trials executed immediately after a reboot “cold”

trials, while we call trials executed after other trials (without

a reboot in between) “hot” trials.

The results are summarized in the first two rows of Fig-

ure 2; the first row represents hot trials (except the first of

the five, which is cold), while the second row represents

cold trials. Now, we are interested in whether or not ran-

domness is reused across resets. Thus, for each set of five

trials, we count how many pairs of trials contain sessions

using the same randomness. We particularly record if a pair

had the same session ID (chosen using the RNG) or used

the same randomness for DSA signing.

As can be seen randomness repetition occurred in both

sets of 5 trials. We noticed that during cold trials, resum-

ing from a snapshot is significantly slower than in hot tri-

als. This affected timing. For example, row 1 in the table

did not have 4 randomness collisions because the first trial

there was cold while the others were hot, leading to timing

differences. Also, we believe the timing variability of cold

trials accounts for the lower success rate seen in row 2.

Experiments with Clock Synchronization. We would like

our automated attack to work even if the guest is synchro-

nizing its clock. Though synchronization would seem to bar

any chance of attack, it turns out that there is often a win-

dow of opportunity for an attacker. Once a VM is loaded

from a snapshot, everything needs to be reinitialized; this

includes re-loading values into memory, re-enabling net-

working, synchronizing the clock, and more. We observed

that VMs running on both VirtualBox and VMWare VMMs

would, after starting from a snapshot, often enable network-

ing and service HTTPS requests before synchronizing the

clock.

We experimented with VMWare 1.0.10 and VirtualBox

3.1.0 using the same configuration, automated script, and

steps as above. For VMWare, we tested our attack with

VMWare tools installed to ensure clock synchronization.

As before and for each VMM, we performed five trials re-

booting the host machine between trials and five trials re-

booting only before the first trial. The results are shown in

Figure 2, rows 3 through 6. Again, sessions used the same

randomness across multiple TLS sessions. VirtualBox had

very consistent resumption timing. The higher variability

of VMWare leads to lower success rates. In particular, as

seen in row 5 of the table, when doing hot trials VMWare

actually synchronized the guest clock before Apache started

servicing the attack connections.

Discussion. One might wonder why session IDs repeat

more often than DSA randomness; while we do not have a

definitive answer for this, we suspect it is because OpenSSL

mixes in an additional time value immediately before DSA

signing, and for some sessions this time ends up being time

X while for others it ends up as time X+1.

In these experiments, we also observed repeat Server-

Randoms and Diffie-Hellman key exchange values. These



values should all be unique in a proper TLS handshake. We

do not know how to exploit this repetition, but nevertheless

believe care should be taken to avoid it.

4. On Fixing the Vulnerabilities

In this section we provide a brief discussion about fix-

ing the VM reset vulnerabilities uncovered. In the TLS

clients and servers we described above, we saw that good

randomness was sampled at some point (such as starting

the program or launching a child process) and buffered un-

til it was needed at some much later time. This allowed

a large window in which snapshots would capture to-be-

used randomness. In the browser client vulnerabilities, the

randomness was used directly in a cryptographic operation

after the snapshot. On the other hand, with Apache, new en-

tropy was added to the RNG right before its output was used

in the cryptographic operation — unfortunately the sources

had little to no entropy conditioned on their being used al-

ready by a previous snapshot.

In abstract, fixing these vulnerabilities requires ensur-

ing that RNGs get access to sufficient entropy after a snap-

shot and ensuring that applications take randomness from

an RNG at the time of the cryptographic operation. For

example, one approach would be to mandate using a guest

OS source such as /dev/random or /dev/urandom to

generate randomness right before a cryptographic operation

is performed.

Unfortunately, the state of these sources is also reset by

snapshots, and so it is unclear whether sufficient entropy is

generated between a snapshot resumption and randomness

consumption by the cryptographic operation. In general, a

better option would likely be linking guest RNG services

with hardware-based RNGs or other external sources.

This is a large topic, and we leave finding the best solu-

tions to future work. Instead, we turn our attention to strate-

gies for mitigating the threat of all types of RNG failures to

better protect against future problems.

5. A General Framework for Hedging against

Randomness Failures

As mentioned in the introduction, there is a long his-

tory of RNG failures [13, 17, 28, 32, 35, 36, 51] stemming

from a variety of issues. The VM reset attacks discussed

in Section 3 show yet another manner by which RNG’s fail.

Additionally, the reset attacks, among other attacks [16, 53],

target routine cryptographic operations that are fragile in

the face of bad randomness. For example, most construc-

tions for key exchange, randomized signing, and encryption

admit damaging attacks given bad randomness, even when

good long-lived key material is used.

We propose a general framework for hedging against

RNG failures. Our method modifies routine cryptographic

operations so that they can defend themselves against vari-

ous forms of bad randomness. By focusing on the cryptog-

raphy, our framework is application- and VMM-agnostic. It

protects against many different kinds of bad randomness. It

is simple to implement and deploy.

Hedging is not a replacement for good RNGs. In partic-

ular, for many cryptographic tasks one needs randomness

to achieve the most desirable security levels (e.g., public-

key encryption). In these cases, hedging provides graceful

degradation of achieved (provable) security.

Hedged cryptography. Our framework is the following. A

hedging function Hedge is a deterministic algorithm with

inputs being an arbitrary-sized bit string R and an arbi-

trary number p of associated data bit strings (d1, . . . , dp) ∈
({0, 1}∗)p. (In implementations, we will actually have to

cap the maximum length of inputs treated by Hedge to,

e.g., 264. We omit this detail throughout for simplicity.) We

write d to mean the vector (d1, . . . , dp). The algorithm out-

puts a bit string of size |R| bits, where |R| is the length of R
in bits. We write Hedge(R,d) = Hedge(R, d1, . . . , dp) to
denote running the algorithm. A hedging function handles

variable-length keys, inputs, and outputs.

Let Op be a randomized cryptographic operation tak-

ing inputs i1, i2, . . . , ik and using an RNG-supplied bit

string R. Denote execution of it by Op(i1, i2, . . . , ik ; R).
We hedge by replacing calls

Op(i1, i2, . . . , ik ; R)

with

Op(i1, i2, . . . , ik ; Hedge(R, 〈d〉))

where d = (OpID, i1, i2, . . . , ik). That is, we apply Hedge

to the RNG-supplied randomness and the inputs to the op-

eration become the associated data. We also include OpID,

which denotes some unique identifier for the operation, to

provide domain separation between uses of Hedge with dis-

tinct operations. Note that we will omit explicit mention

of OpID later for brevity, but it is crucial to use within im-

plementations. The output of Hedge is used as the “ran-

domness” for the operation. Note that functionality is not

changed since randomized cryptographic operations must

work for any R.

The idea of hedging originates with work by Bellare

et al. where they treat the specific case of public-key en-

cryption [19]. One of their constructions is a special case

of ours, where Hedge is replaced with a cryptographic

hash function and Op is specifically public-key encryption.

Yilek [52] treats the special case of randomness reuse at-

tacks against public-key encryption. His construction is a

special case of ours where Hedge is just a PRF and Op is

public-key encryption. These two approaches achieve dif-



Primitive Repeat Exposed Predictable Chosen

Public-key encryption ⋆ ⋄ ⋄ ⋄
Symmetric encryption ⋆ ⋆ ⋆ ⋆
Digital signatures UF UF UF UF

Figure 3. Summary of hedged primitive’s provable security in the face of Repeat, Exposed, Pre
dictable, or adversarially Chosen randomness. Symbol ⋆ means no partial information about plain
texts leaked except plaintext equality. Symbol ⋄means no partial information about plaintexts leaked
assuming plaintexts have highminentropy (unpredictable to attacker). Symbol UFmeans no attacker
can forge an honest party’s signature.

ferent (and orthogonal) security guarantees for public-key

encryption, as discussed further in the next section. Suffice

to say, we simultaneously want both guarantees. Moreover,

we want the same hedging approach to work for other cryp-

tographic primitives. We can achieve this by instantiating

Hedge with an object that is good both as a hash function

and as a PRF.

We suggest the widely-available HMAC algorithm [20],

built from a sufficiently strong underlying hash function,

such as SHA-256, SHA-512 or the upcoming SHA-3.

HMAC takes as input an arbitrarily-long key K and

message M and outputs a string of n bits (e.g., n =
256 for SHA-256). We can use HMAC to instantiate

Hedge(R, d1, . . . , dk) for some number k of associated data

strings as follows. Let p be the smallest integer such that

np ≥ |R|. Compute R′
i = HMAC(R, 〈d1, . . . , dk〉 || i) for

1 ≤ i ≤ p and then output the first |R| bits of

R′
1 || · · · || R

′
p .

Here 〈d1, . . . , dk〉 is some unambiguous encoding of the as-

sociated data and || represents concatenation of bit strings.
In words we apply HMAC several times, using the RNG-

supplied randomness R as the key and the associated data

combined with a counter as the message. The counter

allows us to produce p times the output size of HMAC

(e.g. 512p if using SHA512 within HMAC). We then

run Op using the appropriate number of bits of HMAC out-

put.

Discussion. As mentioned above, functionality is not hin-

dered. That means that hedging a cryptographic operation

has no impact on other, related operations (e.g., decryption

need not be changed when hedging an encryption routine).

This crucially means that hedging is legacy-compatible: any

party can use it and no other parties need know.

We point out that the framework can be just as easily

applied to long-lived key generation (in addition to routine

cryptographic operations). However here one will not, gen-

erally, achieve significant security improvement: there are

usually no other inputs to such routines beyond the random-

ness used. Nevertheless in cases where there are (e.g. the

identity of a party generating a public key, secret key pair)

it might prove beneficial for some kinds of randomness fail-

ures. Note that long-lived key generation is a rare operation

and ensuring it access to fresh randomness might therefore

be easier than more routine operations.

Lastly, the focus of this work is cryptographic consumers

of randomness. However there are other security-critical

uses of randomness and hedging might prove useful in these

as well.

6. Security of Hedging

In this section we discuss the security that hedging pro-

vides. First, we present some general security properties of

hedging, namely that the hedge function does not degrade

the quality of good randomness given to an underlying oper-

ation. This is important because it provides some argument

that hedging won’t hurt most security properties. We will

then discuss hedging of four important primitives: public-

key encryption (PKE), symmetric encryption (SE), digital

signatures (DS), and key exchange. For all these primitives,

many in-use schemes fail completely to provide security in

each of the randomness failure models.

Figure 3 provides a summary of the security provably

achieved by hedging public-key encryption, symmetric en-

cryption and digital signing. (This is assuming the underly-

ing primitive is secure when randomness is good.) Briefly,

hedged PKE will not leak anything but plaintext equality

when randomness is repeated. If randomness is adversari-

ally chosen, predictable, or exposed, then hedged PKE will

not leak any partial information assuming unpredictable,

public-key independent messages. Hedged SE leaks noth-

ing but plaintext equality even against adversarially-chosen

randomness. Hedging essentially removes the need for ran-

domness in digital signing — the traditional notion of un-

forgeability is achieved. All these results, including the

more complex situation for hedged key exchange, are dis-

cussed in further detail in the remainder of this section.

Formalisms and notation. We formalize our security no-

tions using code-based games [25]. In this framework, one

models security as a game played with an adversary. A



game (see Figure 5 for an example) has an Initialize proce-

dure, procedures to respond to adversary oracle queries, and

a Finalize procedure. First, Initialize executes and its out-

puts are given as inputs to an adversary A. Next A executes

and can adaptively make queries to procedures (other than

Initialize and Finalize), receiving the computed responses.

When A terminates with some output, this becomes the in-

put to Finalize. We denote running a game G with adver-

sary A as GA and let GA ⇒ w be the event (in the probabil-

ity space induced by GA) that the output of game G, when

run with adversary A, is w. An adversary’s run time is the

time to run GA, meaning particularly that we charge the ad-

versary for its queries. If working within the random oracle

model (i.e. assumingHedge behaves like an ideal hash func-

tion), then the game has one more procedure implementing

the random oracle. This procedure, usually denoted H, re-

turns for each (distinct) message queried a randomly chosen

value.

6.1. General Security Properties of Hedging

Proving the security improvements achieved by hedging

requires focusing on individual primitives, as we do in the

following sections. First however, we discuss general se-

curity properties needed from Hedge and (informally) how

they lead to security gains. To start, we point out that one

desires that the output of Hedge is indistinguishable from

true randomness whenever one of the following holds:

(1) fresh randomness R is used;

(2) repeated R is used, but all pairs of associated data used

with R are distinct; or

(3) adversarially chosen R is used, but some portion of the

associated data is unpredictable to and hidden from the

adversary (e.g. a secret key or large plaintext).

Informally, property (1) holds under the very mild assump-

tion that Hedge is a good pseudorandom function (keyed

by R) for a very small number of queries. Property (2)

should hold under the assumption that Hedge is a good PRF

for many queries and property (3) should hold ifHedge is an

ideal hash function (a random oracle). We therefore discuss

how Hedge meets the preconditions just described (being a

weak PRF, a PRF, and an ideal hash).

We first show that Hedge is a one-time secure PRF. For-

mally, a variable-key-length one-time PRF (ot-prf) adver-

sary A takes no input, can query a pair r,d where r > 0
is a number and d is a vector of bit strings to an ora-

cle, and outputs a bit. Let H be a hedging function (as

per Section 5). Game OT-PRFH is defined in Figure 4.

The advantage of ot-prf adversary A against a keyed func-

tion H is Adv
ot-prf
H (A) = Pr

[

OT-PRFA
H ⇒ true

]

−

Pr
[

OT-PRFA
H ⇒ false

]

.

LetH be a variable-key-length (VKL) function with out-

put length n. This means H is a deterministic algorithm

Game OT-PRFH

Initialize:

b←$ {0, 1}

Func(r,d):

y0←$ {0, 1}r

y1 ← H(y0,d)

Return yb

Finalize(b′):

Return (b = b′)

Game PRFH,k

Initialize:

K←$ {0, 1}k

b←$ {0, 1}

Func(d):

y1 ← H(K,d)

y0←$ {0, 1}|y1|

Return yb

Finalize(b′):

Return (b = b′)

Figure 4. Onetime PRF and PRF security

games for variablekeylength function H.

that takes a key K of some arbitrary length k > 0 and

an arbitrary-sized-input and outputs a string of length n.
HMAC is an example of a VKL function. Game PRF

defines normal PRF security, see Figure 4. The prf ad-

vantage of adversary B against H is Adv
prf
H (B) =

Pr
[

PRFA
H,k ⇒ true

]

− Pr
[

PRFA
H,k ⇒ false

]

.

It is well-known that HMAC is a secure PRF [18, 20] as-

suming the underlying hash function’s compression func-

tion has suitable PRF-like security properties. (Techni-

cally, one needs resistance to a mild form of related-key at-

tack [22] in addition to the standard PRF security.) Namely,

one can use the results of [18, 20] to derive bounds for

Adv
prf

HMAC,k
(B) for any k. A simple hybrid argument es-

tablishes the following theorem, which is stated for an arbi-

trary VKL function F .

Theorem 6.1 Let F be a VKL function with output

length n. Let Hedge be the hedging function built from

F , as in Section 5. Let A be a ot-prf adversary run-

ning in time t, making at most q queries specifying

lengths r1, r2, . . . , rq . Then there exists q prf adversariesBi

such that

Adv
ot-prf
Hedge (A) ≤

q
∑

i=1

Adv
prf
F,ri

(Bi)

where Bi runs in time that of A and makes ⌊(ri +n−1)/n⌋
queries. �

We can see that the security required from the VKL func-

tion, e.g., HMAC is mild, because m = ⌊(ri +n− 1)/n⌋ is
generally very small. For example when one uses SHA-

256 and ri = 1024, we have that HMAC must resist

merely m = 4 queries for the same key. Finally, we point

out that this reasoning doesn’t hold if ri is too small. How-

ever, for the primitives that we suggest hedging, ri ≥ 128.



Finally, security relies on choosing n sufficiently large (e.g.,

if using SHA-256, SHA-512 in HMAC).

When Hedge is used repeatedly with the same random-

ness, security as a one-time PRF no longer suffices. Here

we require it to be a secure PRF, but this provably holds

under the assumption that HMAC is a secure PRF for an

appropriate number of queries.

Finally, and as mentioned above, we also require that

Hedge enjoys security properties when randomness is

known (or even chosen) by an adversary, meaning in par-

ticular that the randomness input can no longer serve as a

secret key (allowing us to use the PRF security of HMAC).

In these contexts we’ll appeal to modeling Hedge as ideal,

or in cryptographic parlance, a random oracle. This means

that it maps every input to an output randomly chosen from

the space of all outputs for that length. Note that this re-

quirement excludes many other potential instantiations (in-

stead of HMAC), such as most block-cipher-based [15] or

universal-hashing-based [50] MACs, which are not suitable

for modeling as random oracles.

6.2. Publickey Encryption

Public-key encryption (PKE) schemes are used to pro-

vide message privacy, and they have the benefit of asym-

metry: only the recipient’s public key value is needed

to encrypt a message. Existing PKE schemes fail spec-

tacularly in the face of randomness failures. For exam-

ple, all hybrid encryption schemes (those used most fre-

quently in practice) allow plaintext recovery given pre-

dictable randomness and some (e.g., those based on CTR-

mode symmetric encryption) allow plaintext recovery given

repeat randomness [19]. Predictable randomness leads to

plaintext recovery for the Goldwasser-Micali scheme [33]

and the El Gamal scheme [30]. Brown gave a plaintext-

recovery attack against OAEP abusing predictable random-

ness [26]. Ouafi and Vaudenay gave a plaintext-recovery

attack against Rabin-SAEP [45].

Hedged public-key encryption was recently introduced

by Bellare et al. [19]. They propose to hedge arbitrary

PKE schemes with their Randomized Encrypt with Hash

(REwH1) approach, which is the hedging approach de-

scribed in the last section except explicitly using a normal

hash function H (instead of Hedge). In [19] it is shown

that if H is modeled as ideal (a random oracle) then the

hedged PKE scheme simultaneously enjoys two security

properties. The first is the traditional notion of semantic

security [33]. The second is a new notion they introduce

called indistinguishability under chosen distribution attack

(IND-CDA). Intuitively this latter notion means the scheme

behaves like a secure deterministic encryption scheme —

no partial information about plaintexts is leaked as long as

they are drawn from a sufficiently large “space”. That is,

one gets stronger guarantees of security even when random-

ness is adversarially chosen. In subsequent work Yilek [52]

treats the case of reused (but not adversarially chosen) ran-

domness. He suggests a construction which is what we

described above except Hedge is replaced by an arbitrary

keyed PRF. His security notion is orthogonal to that of [19],

meaning meeting one does not imply meeting the other (and

vice versa). Our hedging framework was inspired by these

works.

Hedged security. Formally, a PKE scheme consists of a

triple of algorithms (Kg,Enc,Dec). Key generation Kg

uses randomness to generate a public key, secret key pair

(pk, sk). Encryption Enc takes inputs a public key pk,
message M , and randomness R and outputs a ciphertext.

We denote this computation by Enc(pk,M ; R). Decryp-

tion Dec takes inputs a secret key sk and a ciphertext C
and outputs either a message M or a distinguished er-

ror symbol ⊥. We denote computing this by Dec(sk, C).
We hedge a scheme PKE by replacing Enc(pk,M ; R)
with Enc(pk,M ; Hedge(R, pk,M)). As before, decryp-

tion need not be modified.

Since we specify that Hedge be both a secure keyed PRF

and an ideal hash function, hedging a PKE scheme simul-

taneously achieves the security goals of [19] and of [52].

Indeed, the analyses given by Bellare et al. and Yilek apply

directly, and so for the (lengthy) technical details we refer

the reader to these papers [19, 52].

6.3. Symmetric Encryption

Symmetric encryption (SE) schemes are used to provide

message privacy and authenticity when two parties share

a secret key. Many schemes have randomized encryption

algorithms. In this context the randomness used is of-

ten called the IV (initialization vector). When the IV is

repeated, existing schemes leak partial information about

plaintexts (e.g., CBC-based modes [44], OCB [47]) or even

leak plaintexts completely (e.g., CTR-based modes [44] in-

cluding GCM [40]).

Symmetric encryption robust to randomness failure was

first proposed by Rogaway and Shrimpton [48] where they

formalize misuse-resistant authenticated encryption. They

provide new cryptographic schemes that meet this stronger

goal. A viewpoint inherent in their work is that of nonce-

based symmetric encryption due to Rogaway [46], where

the IV is an explicit input to encryption. We inherit this

viewpoint as well. Kamara and Katz [37] also suggest a

form of SE that survives some kinds of randomness failures,

but these goals and schemes handle more limited random-

ness threats. Applying our hedging framework to a tradi-

tional authenticated-encryption scheme results in the same

security levels achieved in [48], while retaining backwards

compatibility. Informally, the achieved security prevents



Initialize:

K∗←$ Kg

b←$ {0, 1}

Enc(M,R):

C ← EncH(K∗,M ; R)

If b = 1 then Ret C

C ′←$ {0, 1}|C|

Ret C ′

Dec(C):

If b = 1 then Ret Dec(K∗, C)

Ret ⊥

Finalize(b′):

Ret (b = b′)

Game MRAESE

H(X):

If H[X] = ⊥ then

H[X]←$ {0, 1}r

Ret H[X]

Figure 5. Security game for symmetric encryption (MRAE).

leaking anything but plaintext equality no matter how bad

the randomness.

Hedged security. Formally, an SE scheme is a triple of

algorithms (Kg,Enc,Dec). Key generation Kg uses ran-

domness to generate a key. Encryption Enc takes as input

a key K, message M , and uses randomness R to gener-

ate a ciphertext (or ⊥). We say that SE has randomness

length r when Enc only accepts R with |R| = r. (This

check will always be implicit.) We denote executing en-

cryption by Enc(K,M ; R). Decryption Dec takes as in-

put a key K and ciphertext C and outputs either a message

M or distinguished error symbol ⊥. We denote this pro-

cess by Dec(K,C). We hedge a scheme SE by replacing

Enc(K,M ; R) with

Enc(K,M ; Hedge(R,K,M)) .

Decryption works as before.

We utilize the notions of security due to Rogaway and

Shrimpton [48] for misuse-resistant authenticated encryp-

tion. Here we measure an adversary’s ability to distinguish

between two pairs of oracles, one pair being an encryption

oracle and a decryption oracle and the other pair being an

oracle that returns an appropriately long string of random

bits and an oracle that always returns ⊥. Let SE be a sym-

metric encryption scheme with randomness length r. Game

MRAESE in Figure 5 defines security, in the random oracle

model [23], in the sense of misuse-resistant authenticated

encryption (MRAE). The notation EncH means that Enc

might use access to the random oracle implemented by pro-

cedureH. An MRAE adversary A takes no inputs, never re-

peats an encryption query orH query, and never queriesDec

on a value returned by Enc. Its advantage against scheme

SE is defined by

Advmrae
SE (A) = 2 ·Pr

[

MRAEA
SE ⇒ true

]

− 1 .

We define the traditional notion of symmetric encryption

security via game AESE (not shown) which is the same as

MRAESE except that there is no input R to Enc and in-

stead this value is picked uniformly at random upon each

encryption query. (We omit random oracles here since we

will not need them.) An AE adversaryA takes no inputs and

never queriesDec on a value returned by Enc. Its advantage

against scheme SE is defined by

Advae
SE(A) = 2 ·Pr

[

AEA
SE ⇒ true

]

− 1 .

A standard fact is that Advmrae
SE (A) =

Pr
[

MRAE1A
SE ⇒ true

]

− Pr
[

MRAE0A
SE ⇒ false

]

where MRAE1 (resp. MRAE0) is the same as game

MRAE except that the challenge bit b is set to one

(resp. zero). The same holds for Advae
SE(A) =

Pr
[

AE1A
SE ⇒ true

]

− Pr
[

AE0A
SE ⇒ false

]

. Let SE

be any scheme, let MsgSp be the set of all messages

SE handles, and let SE+ be the hedged version of it.

We implement Hedge via the appropriate unambiguous

encoding of the triple (R,K,M) into a value X that is then

queried to the random oracle H. (For simplicity, we ignore

algorithm identifiers.) We have the following theorem.

Theorem 6.2 Let A be an MRAE adversary making at

most qh hash queries, qe < |MsgSpSE| encryption queries,

and qd decryption queries. Then there exists an AE adver-

sary B such thatAdvmrae
SE+ (A) ≤ 2 ·Advae

SE(B). Moreover,

B runs in time at most T(A) + qhT(Enc), makes the same

number of encryption queries, and makes at most qh + qd

decryption queries. �

Note that our reduction is not entirely tight. We believe a

tighter analysis can be given, at the cost of a slightly more

involved reduction than the one we give.

Proof: We use a sequence of games to prove the theo-

rem. Let game G0 work exactly like MRAE1SE+ except

that we set a flag bad if A makes a query to H encoding

a triple (R,K∗,M) for some R,M . Let G1 be the same

as G0 except that Enc now implements Enc instead of the

hedged function. That is, it uses true randomness and does

not query the random oracle. We have by the fundamental

lemma of game playing [25] that

Pr
[

G0A ⇒ true
]

− Pr
[

G1A ⇒ true
]

≤ Pr
[

G1A sets bad
]

where “G1A sets bad” is the event that A forces bad to be

set in game G1. Game G2 works like G1 except that Enc

queries are responded to with randomness of equal length

(i.e., using the Enc procedure of game AE0SE) and all Dec



queries are responded to with ⊥. We have that G2 is equiv-

alent to MRAE0SE+ , meaning that Pr[G2A ⇒ true] =
Pr[MRAE0SE+ ⇒ true]. Moreover we can build an ad-

versary B′ such that

Pr
[

G1A ⇒ true
]

− Pr
[

G2A ⇒ true
]

≤ Advae
SE(B′) .

The adversary B′ just runs G1A except implementing Enc

and Dec using its oracles instead. All that remains is to

bound the setting of bad in game G1. This event indicates
that A managed to query the secret key K∗ when given an

encryption oracle for Enc (using real randomness) and de-

cryption oracles. We will bound Pr[G1A sets bad] by an ae
adversary B′′ against SE.

The adversary B′′ works as follows.

Run A, simulating its oracles by

Enc(M,R):

M ∪←M ; C ← Enc′(M); C ∪← C; return C
Dec(C): return Dec′(C)

H(R,K,M): K ∪←K; return Y ←$ {0, 1}r

A halts with output b′

Choose M /∈M
Foreach K ∈ K do

C←$ Enc(K,M); If C ∈ C then Output 0

M ′ ← Dec(C); If M ′ = M then Output 1

Output 0

That isB′′ simulates G1A except using its own oracles Enc′

and Dec′ to reply to A’s encryption and decryption queries.

At the end it checks what set of oracles it has by using

the keys queried by A to H. We have that Pr[QueryK] =
Pr[G1A sets bad] where “QueryK” is the event that K∗ is

queried by A in the event space defined by AEB′′

. More-

over, we have that Pr
[

AE1B′′

⇒ true |QueryK
]

= 1 be-

cause if the key is queried then one of Ki will pass the

decryption check B′′ executes. Moreover Pr[AE0B′′

⇒
false] = 0 because in AE0 the decryption oracle always

returns ⊥. By conditioning on QueryK we derive that

Advae
SE(B′′) ≥ Pr[QueryK] = Pr[G1A sets bad]. Letting

B be the adversary B′ or B′′ with better advantage gives

the theorem statement.

6.4. Digital Signatures

A digital signature (DS) scheme is used to sign a mes-

sage in an unforgeable manner. Many DS schemes use

randomized signing algorithms. Randomness failures cause

significant security problems for these schemes. For exam-

ple, well-known secret key recovery attacks work against

DSA when repeated or predictable randomness is used.

This property of DSA was exploited by our attacks in

Section 3. Such attacks also affect many schemes built us-

ing the Fiat-Shamir transform [29].

Note that there is a folklore technique for removing ran-

domization from signature schemes (e.g. see [38]). It in-

volves adding to the secret key of a randomized signature

scheme a key for a secure PRF (e.g. HMAC). To sign a

message, then, one generates randomness for the Sign al-

gorithm deterministically by applying the PRF to the input

message. Our hedged construction follows this in spirit, but

crucially does not require modifying the description of the

secret key. Moreover, the security achieved when random-

ness is fresh is better than that obtained by the folklore tech-

nique, because the assumption on Hedge is milder.

Hedged security. Formally, a randomized DS scheme con-

sists of a triple of algorithms (Kg, Sign, Vf). Key gener-

ation Kg uses randomness to generate a (public) verifica-

tion key, signing key pair (pk, sk). Signing Sign takes in-

puts a signing key sk, message M , and randomness R and

outputs a signature. We denote computing a signature by

Sign(sk,M ; R). Verification Vf takes inputs a verifica-

tion key pk, a message M , and a signature σ and outputs a

bit. We denote verification of a signature by Vf(pk,M, σ).
We hedge a scheme DS by replacing Sign(sk,M ; R) with
Sign(sk,M ; Hedge(R, sk,M)). Verification remains un-

modified.

DS schemes should be what is called existentially un-

forgeable against chosen message attacks (UF-CMA) [34].

Intuitively, this means that an adversary should not be able

to forge a signature on a new message, even after seeing

signatures on many chosen messages. We extend this def-

inition to treat chosen message and chosen randomness at-

tacks. Game UFCMRA in Figure 6 specifies UF-CMRA se-

curity in the random oracle model. A uf-cmra adversary A
takes input a public key, never repeats a query to the ran-

dom oracle H, and outputs a bit. Game UFCMA is the

same as UFCMRA except that R is not chosen by adver-

saries for Sign queries, but rather chosen freshly at random

each for each query. We define the uf-cmra advantage of an

adversary A against signature scheme DS and the uf-cma

advantage of an adversary B also against DS by

Advuf-cmra
DS (A) = Pr

[

UFCMRAA ⇒ true
]

and

Advuf-cma
DS (B) = Pr

[

UFCMAB ⇒ true
]

.

For any digital signature scheme DS, let DS+ be the hedged

version of it where the hedge function is modeled by the

random oracle. Then we have the following theorem.

Theorem 6.3 Let DS be a digital signature scheme and

DS+ be its hedged version. Let A be a uf-cmra adversary

against DS+ making at most qh hash queries. Then there

exists a uf-cma adversary B such that Advuf-cmra
DS+ (A) ≤



Initialize:

(pk∗, sk∗)←$ Kg

S ← ∅
Ret pk

Sign(M,R):

σ ← Sign
H(sk∗,M ; R)

Ret σ

Finalize(M,σ):
If Vf(pk∗,M, σ) = 1 then

Ret true

Ret false

Game UFCMRADS

H(X):
If H[X] = ⊥ then

H[X]←$ {0, 1}r

Ret H[X]

Figure 6. Security game for digital signatures (UFCMRA).

2 · Advuf-cma
DS (B). Adversary B makes the same number

of signing queries as A and runs in time that of A plus the

time to compute qh signatures and verify each. �

Proof: Let B work as follows. On input public key pk∗ it

runs A(pk∗). When A makes a random oracle query X , ad-

versary B parses X as a triple (R, sk,M) and then use sk
to a sign a new message M ′ not before queried and see if it

verifies under pk∗. If so, halt and output the forgery. Oth-

erwise return a random value to A. When A makes signing

queries, Adversary B answers A’s signing queries using its

own oracle (and ignoring the queried value R). When A
halts outputting a forgery attempt, B outputs it.

We can see that

Pr
[

UFCMRAA
DS+ ⇒ true

]

≤

Pr
[

UFCMRAA
DS+ ⇒ true |QuerySK

]

+ Pr
[

UFCMRAA
DS+ ⇒ true |QuerySK

]

where the event QuerySK represents the event that A
queries challenge sk to H and QuerySK is its comple-

ment. But the right hand terms are both bounded by

Advuf-cma
DS (B) since, in the first case, B succeeds using

the secret key and, in the second case, B simulates A’s ex-

periment.

6.5. Key Exchange

A key exchange (KE) protocol involves two parties,

which we’ll call a client and server. The goal is for the

client and server to privately agree on a secret session

key. Typically this session key is used as a key for an SE

scheme. There are a wide variety of key exchange pro-

tocols, but generally they can be defined via two update

algorithms UpdateClnt and UpdateSrvr run by the client

and server respectively. These take as input an internal

state st, a string msgs describing all the messages sent and

received thus far, and a string of random coins used for

randomness. We write UpdateClnt(st,msgs ; R) to denote

computing, using randomness R, the next message sent by

the client when its current state is st and all the messages

so far sent and received are encoded in msgs. Likewise

we write UpdateSrvr(st,msgs ; R). Then we can simply

apply hedging in the now usual way, by instead running

UpdateClnt(st,msgs ; Hedge(R,AlgID, st,msgs)) and

similarly modify UpdateSrvr to use hedged randomness.

To make this concrete, we give the hedged RSA key

transport and authenticated Diffie-Hellman key exchange

protocols used in TLS and elsewhere. See Figure 7 for a

(slightly simplified) explanation of the protocols. In RSA

key transport, the client uses a server’s public key to encrypt

a secret value R′
1 that is used as the secret material to derive

a session key. In Diffie-Hellman the session key is chosen

as a combination of randomness chosen by both the client

and the server. The server’s contribution is signed using a

DS scheme. Note that for brevity we do not show hedging

of the (random) nonces used in these protocols, nor do we

show hedging of the encryption and signing operations.

Security definitions for key exchange are complex (e.g.,

see [24, 27, 39]), and extending existing definitions to

model randomness failures is a considerable topic of its

own. We leave it to future work. That said, we can make

several meaningful statements about security. First, hedg-

ing does not hinder meeting traditional goals here as per

the discussion in Section 6.1. Second, hedging ensures that

key transport will not send the same session key to dif-

ferent servers, meaning in particular a hedged TLS client

from Section 3 will never send the same PMS to different

servers. (For the server attack, hedging DSA already pro-

tects from extraction of the secret key.)

7. Implementing Hedging in OpenSSL

We report on a case study of implementing hedging

within the OpenSSL code base. This implementation con-

sists of a cryptographic tools library (the OpenSSL crypto

library), and a TLS library (the OpenSSL ssl library). The

former is widely used within security applications beyond

TLS, and so hedging it can have far-reaching consequence.

Besides hedging an important code base, this case study will

allow us to evaluate the performance impact of hedging in-

use cryptographic tools. Looking ahead, hedging appears to

have little performance impact for numerous operations and

usage scenarios. This case study indicates that many cryp-

tographic deployments can easily support hedging, motivat-

ing the adoption of hedging to protect against unforeseen

RNG failures.
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-

Ns, certe
�

R′

1
← Hedge(R1, 0, Nc, Ns, certe)

C ← Enc(pke, R′

1
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R′
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← Dec(ske, C)

K = H(Nc || Ns || R′

1
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Client Server

Nc
-

y ← Hedge(R1, 2, Nc) ; Y ← gy

Ns, certs, Y, σ
� σ ← Sign(sks, Y ; R2)

x← Hedge(R3, 1, Nc, Ns, certs, gy , σ)

X ← gx gx

-

K = H(Nc || Ns || X, Y, Y x) K = H(Nc || Ns || X, Y, Xy)

Figure 7. Hedging (top) RSA key transport and (bottom) signed DiffieHellman authenticated key
exchange. We use Nc, Ns to denote nonces and R1, R2, R3 to denote RNGderived randomness.
Application of Hedge includes numbers 0,1,2 as standins for unique algorithm identifiers. (Top) The
server has a certificate certe for a PKE scheme with keys (pke, ske). The client checks this certificate,
aborting if the check fails. (Bottom) The server has a certificate certs for a DS scheme with keys
(pks, sks). The client checks the certificate and signature σ, aborting if either fails.

Our starting point was the current stable version of

OpenSSL at the time of writing, version 0.9.8k. We hedged

the most commonly utilized operations: RSA public-

key encryption with PKCS#1 v1.5 randomized padding,

RSA OAEP public-key encryption, DSA signing, and the

ephemeral Diffie-Hellman (DHE) key exchange client and

server. The first three operations involved only modify-

ing code within the crypto library while the key exchange

code is in the ssl library. Note that TLS 1.0 only uses

stateful symmetric encryption and as such this version of

OpenSSL does not implement randomized symmetric en-

cryption primitives1. Future work could evaluate the hedg-

ing of symmetric encryption primitives in TLS 1.1 or 1.2

or in other tools, also comparing them to custom solutions

proposed by [48]. (These solutions will likely be included

in future versions of TLS.)

Our hedged version of OpenSSL 0.9.8k will be referred

to as “hedged”, while “plain” refers to the original, unmod-

ified OpenSSL 0.9.8k. We used the cloc utility for counting

lines of code [5] to get a sense of the scale of modifica-

tions due to hedging. The hedged ssl library added 45 more

physical lines of code and the hedged crypto library had 728

more physical lines of code.

In the following we use two machine configurations for

benchmarking. Our server system is a Pentium 4 2.0 GHz

1For example, the CBC block cipher mode of TLS 1.0 does in fact uti-

lize a randomized IV, but it is generated only once per session during key

exchange. Further packets are encrypted using as IV the last block of the

previous ciphertext. So in this version of TLS, hedging key exchange ef-

fectively hedges the symmetric encryption routines as much as is possible.

For further details see [8] and [41].

with 1 GB of RAM running Ubuntu Linux 8.04 Server. It

ran Apache 2.2.13 with mod ssl built from either the hedged

OpenSSL or plain OpenSSL library, with both RSA and

DSA keys setup, and all other options set to their defaults.

We recompiled Apache when switching between libraries.

Our client systems are Dual Pentium 4 3.20 GHz systems

with 1 GB of RAM running Ubuntu Linux 8.04 Desktop.

Performance of Hedge implementations. Recall that

Hedge makes black-box use of HMAC, which in turn uses

an underlying hash function. We investigate three natu-

ral choices for this hash function: SHA-1, SHA-256, and

SHA-512. Recent attacks [49] mean SHA-1 is no longer

considered secure. We do not recommend its use but in-

clude it for the sake of comparison. New hash functions are

being designed for an eventual SHA-3 standard [2]; one can

easily upgrade Hedge to use newer hash functions.

We first report on a naı̈ve implementation of Hedge that

simply iterates HMAC a sufficient number of times follow-

ing the description in Section 5. The left graph in Figure 8

depicts the performance of this implementation when us-

ing each of the hash functions and when requesting vari-

ous amounts of random bytes. The benchmarks were per-

formed on one of the client machines. The amount of asso-

ciated data was set to 3,000 bytes. (The primitives we hedge

never supply more than this amount of associated data for

standard key lengths.) As expected, SHA-1 is the fastest.

SHA-256 provides little performance benefit over SHA-512

for small output lengths and is significantly slower as output

length increases. This is because SHA-512 generates more

output per iteration.
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Figure 8. Comparison of Hedge implementations when requesting various numbers of random bytes
and including 3,000 bytes of associated data and using SHAx for x ∈ {1, 256, 512}. Time is median
of 1,000 executions after 100 untimed executions. (Left) A naı̈ve implementation that iterates HMAC

for each extra block of output needed. (Right) An implementation that reuses internal HMAC state
between iterations.

As the length of output increases, performance severely

degrades. We can speed up the implementation with a sim-

ple optimization. Note that when executing Hedge all the

input to HMAC modulo the iteration counter remains the

same for each application of HMAC. Thus we modify the

HMAC code to allow computing it up through all of the

common values once, and then finishing the computation

for each iteration separately. The right graph in Figure 8

depicts the performance of this implementation. (The out-

liers in the lower left corner were due to unrelated system

activity.) As can be seen the improvement is large, and so

we utilize this latter implementation for the rest of our tests.

We recommend SHA-512 for greatest security and uti-

lize it for all further benchmarks. Of course, we again em-

phasize that any user deploying hedging can utilize any (se-

cure) hash function they desire.

Performance of asymmetric primitives. We measure

the performance overhead of hedging specific asymmetric

cryptographic operations: RSA encryption with PKCS#1

v1.5 randomized padding, RSA encryption with OAEP

padding, DSA signing, and ephemeral Diffie-Hellman key

generation (used in key exchange). For brevity we refer

to these operations at PKCS#1, OAEP, DSA, and DHE.

Figure 9 shows the results of timing 1,000 repetitions of

each operation either without hedging (“Plain”) or with

hedging (“Hedged”). For both, we always performed an

additional 100 repetitions before the 1,000 measured itera-

tions. (This lowered variability in standard deviations.) As

one might expect, the overhead due to hedging decreases

quickly with increased key size (and, thereby, running time)

of the underlying operation. The largest overheads are

for client-side operations such as PKCS#1 and OAEP with

1024 bit keys. PKCS#1 has slightly worse performance be-

cause one needs to generate more randomness compared

to OAEP. The typical server-side operations (where perfor-

mance tends to matter most) of DSA and DHE have low

overhead.

TLS handshake performance. The microbenchmarks

just given suggest that performance of individual OpenSSL

handshakes will not be degraded significantly. To be sure,

we measured the time for a client to open a TLS connection

with a remote server. Figure 10 reports the results for do-

ing so with both plain TLS and hedged TLS (both the client

and server using hedged operations). Here AES128-SHA

refers to key exchange using RSA PKCS#1 encryption with

1024-bit RSA keys, DHE-RSA-AES128-SHA refers to key

exchange using 1024-bit ephemeral Diffie-Hellman with

RSA signing, and DHE-DSS-AES128-SHA refers to key

exchange using 1024-bit ephemeral Diffie-Hellman with

DSA signing. (AES128-SHA suffixes refers to the sym-

metric encryption mechanism, which does not affect these

timings.) As expected, there is no discernible difference be-

tween plain times and hedged times.

Server overhead. Individual connections are not slowed

down by hedging, but it could be that the extra CPU

costs due to hedging significantly burdens heavily loaded

servers. We measure average throughput of our Apache

HTTPS server when built against plain OpenSSL and

against hedged OpenSSL. Note that only the two Diffie-

Hellman key exchange protocols have server-side hedging,

and so we report only on these. Figure 11 depicts the results

of saturating the server with HTTPS requests for a 44-byte

HTML file. To perform this experiment, we setup two client



Plain time (µs) Hedged time (µs)

Operation Median (Min,Mean,Max,Std. Dev) Median (Min,Mean,Max,Std. Dev) Ratio

PKCS#1 1024 140 (138,141,556,13) 185 (183,186,301,6) 1.32

PKCS#1 2048 415 (412,417,720,20) 478 (476,483,722,19) 1.15

PKCS#1 4096 1589 (1580,1591,1836,18) 1686 (1678,1694,1919,31) 1.06

OAEP 1024 140 (139,140,189,2) 179 (178,179,254,3) 1.28

OAEP 2048 410 (409,412,646,10) 457 (455,458,673,12) 1.11

OAEP 4096 1579 (1572,1581,1804,18) 1632 (1625,1634,1887,19) 1.03

DSA 1024 1324 (1264,1325,1576,23) 1426 (1381,1429,1682,27) 1.08

DSA 2048 4025 (3898,4027,4441,55) 4156 (4026,4164,4738,68) 1.03

EDH 1024 7937 (7910,7948,8616,60) 8002 (7976,8010,8656,56) 1.01

Figure 9. Comparison of asymmetric cryptographic operations without hedging (“Plain”) and with
hedging (“Hedged”). All values are time in microseconds measured over 1,000 repetitions. “Ratio”
is the median hedged time divided by median plain time.

Plain time (µs) Hedged time (µs)

Operation Median (Min,Mean,Max,Std. Dev) Median (Min,Mean,Max,Std. Dev)

AES128-SHA 6941 (6875,6989,8380,231) 6968 (6890,7310,11334,920)

DHE-RSA-AES128-SHA 52030 (51756,52120,63388,470) 52828 (51150,52618,62841,735)

DHE-DSS-AES128-SHA 50907 (50567,50959,64224,471) 51067 (50011,51010,62020,673)

Figure 10. Measuring TLS connection time without hedging (“Plain”) and with hedging (“Hedged”).
Measurements were performed on the client over 1,000 executions. The server had 1024bit RSA and
DSA keys.

systems running httperf [6] and administered them using the

autobench tool [4]. For each rate httperf attempted 3,000

connections with a timeout of 1 second. As can be seen

in the graphs, the server was quickly saturated both when

performing RSA signing with DHE and DSA signing with

DHE. The former became saturated slightly sooner than the

latter, perhaps due to RSA’s more expensive signing opera-

tion. In both cases the hedged server performed as well as

the plain server. Note that the server in this experiment was

entirely unoptimized, and so this experiment may not be in-

dicative of a performance gap on a fully optimized server.

Nevertheless it reveals that for an “out-of-the-box” TLS de-

ployment there is no significant overhead when hedging.

8. Conclusions

This paper had two main contributions. First, we re-

vealed the first virtual machine reset vulnerabilities affect-

ing deployed software. Given repeated use of a VM snap-

shot, we showed how attackers can compromise TLS ses-

sions or even extract a server’s secret DSA authentication

key. The vulnerabilities stem from a combination of fac-

tors. First, applications cache to-be-used randomness long

before consumption or do not add enough new entropy to

their RNGs right before use. Second, the cryptographic op-

erations that consume this randomness are fragile in the face

of the ensuing randomness reuse.

Our second contribution was dealing with this latter

problem, the endemic fragility of routine cryptographic op-

erations when given bad randomness. We developed a gen-

eral framework for hedging cryptographic operations. Our

hedging approach is simple and incrementally deployable,

and it provides provably better resistance to RNG failures

for important primitives. As our implementation within

OpenSSL indicates, hedging is fast.

Moreover, we feel that hedging is needed. Generating

randomness is inherently complex, as indicated by a long

history of RNG failures. Future RNG problems will almost

certainly arise, and, as we exemplified by our results on VM

reset vulnerabilities, new technologies create new problems.

Ensuring that cryptography is built to provide as much se-

curity as possible for any given quality of randomness will

effectively limit the damage done by future RNG failures.
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Figure 11. Saturating an Apache 2 server (in default configuration) with HTTPS requests when using
plain mod ssl and hedged mod ssl. (Left) Using RSA signing with ephemeral DiffieHellman (DHE
RSAAES128SHA). (Right) Using DSA signing with ephemeral DiffieHellman (DHEDSAAES128
SHA).
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A. DSA Key Recovery Attacks

We review the Digital Signature Algorithm (DSA) [14].

For simplicity, we focus on the 1024-bit case. Let p be a

1024-bit prime, q a 160-bit prime that divides p − 1, and g
an integer with order q mod p. These are the parameters.

The private key is chosen as a random x ∈ Zq, and the

public key is y = gx mod p.
To sign a message M , first hash M into a 160-bit value

H(M). Then choose a random value k ∈ Zq and compute

r = (gk mod p) mod q and s = (k−1(H(M) + xr))
mod q. The signature is (r, s), a pair of at most 160-bit val-

ues. We omit the description of the verification algorithm.

DSA is believed to be a secure signature scheme, how-

ever it is well-known that if the randomness k is known or

even generated by some types of weak RNGs, then an ad-

versary can extract the signer’s secret key [21].

It is also the case that if an adversary sees two signatures

that use the same k for different messages, then he can effi-

ciently extract the secret key. To see this, consider two sig-

natures (r, s) and (r, s′) over messages M and M ′ hashing

to distinct values H(M) and H(M ′), respectively. An ad-

versary can then compute k = (H(M)−H(M ′))(s−s′)−1

mod q.


