
Tackling Adaptive Corruptions in Multicast Encryption Protocols

Saurabh Panjwani∗

January 30, 2007

Abstract

We prove a computational soundness theorem for symmetric-key encryption protocols that
can be used to analyze security against adaptively corrupting adversaries (that is, adver-
saries who corrupt protocol participants during protocol execution). Our soundness theorem
shows that if the encryption scheme used in the protocol is semantically secure, and en-
cryption cycles are absent, then security against adaptive corruptions is achievable via a
reduction factor of O(n · (2n)l), with n and l being (respectively) the size and depth of the
key graph generated during any protocol execution. Since, in most protocols of practical
interest, the depth of key graphs (measured as the longest chain of ciphertexts of the form
Ek1

(k2), Ek2
(k3), Ek3

(k4), · · ·) is much smaller than their size (the total number of keys), this
gives us a powerful tool to argue about the adaptive security of such protocols, without
resorting to non-standard techniques (like non-committing encryption).

We apply our soundness theorem to the security analysis of multicast encryption
protocols and show that a variant of the Logical Key Hierarchy (LKH) protocol is adaptively
secure (with its security being quasi-polynomially related to the security of the underlying
encryption scheme). This settles (in part) an open question posed by Micciancio and Pan-
jwani in TCC 2005.

Keywords: Adaptive Corruptions, Multicast, Encryption, Selective Decryption

∗Department of Computer Science and Engineering, University of California, San Diego, Email:
panjwani@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/spanjwan. This material is based upon work
supported by the National Science Foundation under the Grant CNS-0430595

Contents

1 Introduction 1

2 The Main Result 6

3 The Application 12

A Proof of Theorem 2.4 19
A.1 The Reduction . 19
A.2 The Analysis. 20

A.2.1 Proof of Lemma A.2 . 23
A.2.2 Proof of Claim A.3 . 28
A.2.3 Proof of Claim A.4 . 28
A.2.4 Proof of the Hybrid Cancellation Lemma (Lemma A.5) 32
A.2.5 Proof of the Telescoping Sums Lemma (Lemma A.6) 42

1 Introduction

Imagine a large group of users engaged in a private virtual conversation over the Internet. The
group is monitored by a group manager who ensures that at all points in time, users share a
common secret key which is used for secure communication within the group (e.g., for encrypting
all data that is exchanged between group members). Over time, the composition of the group
changes—users can leave and/or join it at various (a priori unknown) instants—and, accordingly,
the manager sends “update” messages to the group which enable all and only current participants
to acquire the common secret. At some calamitous hour, a large number of user terminals get
hijacked (e.g., an Internet worm infects half the Windows users in the group) and all information
possessed by these users gets compromised. Clearly, this results in the compromise of group data
that was exchanged while these ill-fated participants were part of the group. The question is—
can one be sure that the data for other instants (that is, instants when affected participants
were all outside the group) is still secure?

Answering such a question in the affirmative, even for simple security protocols (based on
conventional, symmetric-key encryption alone) is often beset with tough challenges. The possi-
bility of user corruptions occurring during protocol execution, and in a manner that is adaptively
controlled by the attacker, increases the threat to a protocol’s security and makes the task of
proving protocols secure an unnerving task. It is known that, in general, protocols proven se-
cure against non-adaptive attacks may actually turn insecure once an adversary is allowed to
corrupt participants adaptively. (See [CFGN96] for a simple separation result for protocols
based on secret sharing.) The situation is especially annoying for protocols that make use
of encryption—adversaries can spy on ciphertexts exchanged between two honest parties, and
later, at will, corrupt one of the parties, acquire its internal state, and use such information to
“open” all ciphertexts which were previously sent or received by that party. While trying to
prove security of such a protocol, one must argue that all “unopened” ciphertexts (those that
cannot be decrypted trivially using the compromised keys) leak essentially no information to
the adversary (that is, appear as good as encryptions of random bitstrings). The heart of the
problem lies in the fact that one does not a priori know which ciphertexts are going to be opened
by the adversary since these decisions are made only as the protocol proceeds. Besides, every
ciphertext is a binding commitment to the plaintext it hides—one cannot hope to “fool” the
adversary by sending encryptions of random bitstrings every time and then, when he corrupts
a party, somehow convince him that the ciphertexts he saw earlier on (and which he can now
open) were, in fact, encryptions of real data.

Previous Approaches. In the past, security analysis of encryption-based multiparty proto-
cols against adaptive adversaries has largely been conducted using three approaches. The first
(and the simplest one) involves bypassing adaptive security altogether—if you cannot prove a
protocol adaptively secure, then so be it. (That is, rest your minds with non-adaptive security.)
For example, many recent papers on broadcast encryption [AKI03, BGW05, DC06] introduce
protocols which improve upon previous proposals significantly (typically in terms of efficiency),
but leave the question of adaptive security of their protocols unresolved. This is rather unfor-
tunate. We believe that adaptive corruptions model a particularly interesting attack scenario
(and a practical one, too!), and it is worthwhile to explore solutions that address the threats
posed by them before improving upon other metrics (like efficiency).

The second approach to adaptive security has worked around the problem by studying it in
restricted models where strict rules are imposed on the behaviour of honest participants. The
most common imposition is that of erasure [BH92]—all honest parties should erase their past

1

state the moment they enter a new state configuration (wherein keys are generated afresh). Intu-
itively, such an imposition (rather, honest abidance by it) enables us to achieve adaptively secure
encryption protocols because adversaries can no longer “open” previously-sent ciphertexts even
after corrupting the involved parties; doing so requires the keys used to create the ciphertexts in
the first place, which, we trust, have been diligently erased from the system. However, investing
such a level of trust in honest parties is an unrealistic proposition—an honest party could simply
forget to erase its previous states, or else, internally deviate from the rules of the game (that
is, purposely store past keys and behave in an “honest-but-curious” manner). Besides, some
cryptographic protocols, for the sake of improving efficiency, require users to store keys received
in the past and such protocols (an example will be discussed in this paper) would need to be
re-designed in order to comply with the model.

The third approach, and perhaps the most compelling one, to adaptive security has been to
develop non-standard notions of security of an encryption scheme. This corresponds to a line of
research initiated by Canetti et al. [CFGN96], who introduced a cryptographic primitive, called
non-committing encryption, specifically to address the problem of adaptive corruptions in multi-
party protocols. Non-committing encryption schemes have the unusual property that ciphertexts
created using them need not behave as binding commitments on the corresponding plaintexts
(hence the name “non-committing”). That is, it is possible that an encryption of ‘0’ collide with
an encryption of ‘1’ (or, more generally, encryption of real data be the same as encryption of a
random bitstring). However, such collisions occur with only negligible probability—the chances
of encrypting ‘0’ and obtaining a ciphertext which can later be opened as ‘1’ are very small.
At the same time, these schemes allow to sample “ambiguous” ciphertexts (those that can be
opened as either ‘0’ or ‘1’) efficiently and to convince an adversary of such a ciphertext being
an encryption of ‘0’ or of ‘1’, as the situation demands. Encryption protocols implemented with
non-committing encryption can be proven to achieve adaptive security quite easily—in the secu-
rity proof, one just simulates the real protocol by transmitting ambiguous ciphertexts and upon
corruption of a party, convinces the adversary that the ciphertexts he saw earlier were indeed
the encryptions of the revealed data. Non-committing encryption schemes, though interesting
in their own right, have their share of limitations—they are typically too inefficient for practical
applications, and require bounding (a priori) the number of message bits that can be encrypted
using any single key (usually, the number of bits that can be encrypted with a key cannot be
more than the size of the key itself, which is highly prohibitive for real applications)1.

Our Contribution. In this paper, we show that it is possible to argue about the adaptive
security of a large class of encryption protocols, without requiring erasures and without resort-
ing to primitives like non-committing encryption, while simultaneously achieving efficiency that
meets practical requirements. We focus on protocols built generically from symmetric-key en-
cryption (no other primitives are involved) and where every ciphertext is created by encrypting
a key or a data element, with a single other key (no nesting of the encryption operation). We
show that for a large variety of such protocols if keys are generated randomly and independently
of each other, then protocols can be proven adaptively secure, even under the assumption that
the encryption scheme is semantically secure, with very reasonable assurances on the strength
of the protocol against adaptive corruptions.

Our main contribution is a general computational soundness theorem for encryption pro-

1As shown by Nielsen [?], any non-committing encryption scheme that has a non-interactive encryption pro-
cedure must use a decryption key that is at least as long as the total number of bits to be decrypted. Some
non-committing encryption schemes [CHK05] circumvent this impossibility result by studying the problem in a
restricted model where bounds on the frequency of communication between parties are placed.

2

tocols which works as follows. Consider an abstract game played between an adversary and a
challenger, both being given a security parameter and access to a semantically secure symmetric-
key encryption algorithm E . Initially, the challenger generates n random, independent keys
k1, k2, · · · , kn and keeps them secret from the adversary. During the game, the adversary grad-
ually and adaptively builds a directed graph G over n nodes labeled 1 through n. He arbitrarily
introduces edges into the graph and for each such edge i→ j he asks the challenger to provide
an encryption of the key kj under the key ki, that is, Eki(kj). (Thus, creation of the edge i→ j
in G depicts the fact that given ki, the adversary can recover kj , via the decryption operation
corresponding to E .) The adversary can also (again adaptively) decide to “corrupt” some nodes
in the graph—from time to time, he instructs the challenger to reveal the key associated with the
ith node in G (for any arbitrary i) and the challenger must answer with ki in such a situation.
We refer to G as the key graph generated by the adversary and the nodes in G that correspond
to the revealed keys are called corrupt nodes. Note that any node i′ in G that is reachable from a
corrupt node i is also effectively corrupt; the adversary can recover the corresponding key using
successive decryptions along the path from i to i′. The question is—can we prove that, at the
end of the game, keys corresponding to nodes that are not reachable from any of the corrupt
nodes, are still pseudorandom?

This simple game (formalized further in Section 2) provides an effective abstraction for many
of the challenges a security analyst can expect to face when proving protocols secure against
adaptive corruptions. The power to corrupt nodes in an adaptive fashion models the ability
of attackers to compromise keys of users during the execution of the protocol. The power to
decide the structure of all ciphertexts abstracts the fact that the execution flow of the protocol
is indeterminable at design time and can potentially be influenced by the adversary during
run-time. (A slight variant of the game would be one in which the adversary can also acquire
ciphertexts formed by encrypting arbitrary messages of his choice. We will discuss this variant
further in Section 2.) Note that we allow the creation of ciphertexts even after nodes have been
corrupted (that is, the compromise of a key at some point in the protocol should not hamper
security of ciphertexts created using future uncompromised keys). Likewise, the security of keys
transmitted in the past must be preserved even if other keys are compromised in the future2.

A naive first step to proving security in the game we just described would be to guess, a
priori, the set of nodes that the adversary is going to corrupt during the execution and for every
edge issuing from such a node, reply with a real ciphertext (while for the other edges reply with
encryptions of random bitstrings). Any security reduction seeded with an idea that involves
guessing a subset of nodes in this manner would give us a reduction factor that is exponential in
n (that is, we would end up proving a statement like “if the encryption scheme is ε-secure then
security in the game is guaranteed with probability 2nε”). Such a reduction would be completely
impractical; in most applications, n would be of the order of the number of protocol participants,
which can be extremely large.

In this paper, we prove security in this game using a significantly different approach, and
one that is of much better practical value. We show that if the key graph G generated by the
adversary is acyclic3 and if its depth (defined as the length of the longest path in G) is upper

2 Note, however, that our abstract game does not capture active attacks on protocols—the adversary cannot
ask for decryptions of ciphertexts (under unrevealed keys) and/or send malleated ciphertexts to honest parties.
Extending the results of this paper to a setting where active attacks are also allowed is postponed to future work.

3 Acyclicity of key graphs is an almost-inescapable criterion required in security proofs of protocols based on
encryption. For example, it was noted in the seminal work of Goldwasser and Micali [GM84] that semantically
secure encryption schemes may not remain secure if keys are allowed to encrypt themselves and the ciphertext
given to the adversary.

3

bounded by a parameter l, then security in our game can be proven via a reduction factor of
O(n · (2n)l). Here, by “security in our game” we mean that keys that (a) cannot be trivially
recovered by the adversary (that is, are not reachable from corrupt nodes in G) and (b) are
not used to encrypt other keys4, remain pseudorandom at the end of it. That is, we prove
that the security of a semantically secure encryption scheme can degrade in the face of adap-
tive attacks (as those captured by our game) by a factor of at most O(n ·(2n)l) but not by worse.

An Application. So what is this reduction good for? At first glance, it would appear that it
is much worse than the naive solution—l could potentially be of the order of n and n · (2n)n

is obviously no more consoling than 2n. Well, for arbitrary key graphs, this is indeed the
case. However, in practice, key graphs are much smaller (in fact, orders of magnitude smaller)
in depth than in total size. For example, the key graphs generated in the execution of most
broadcast encryption protocols (those falling under the subset-cover framework introduced by
Naor et al. [NNL01]) have depth 1 and their depth remains fixed for arbitrarily long runs of the
protocol. All encryption-based group key distribution protocols (designed for secure multicast
over the Internet, and also called multicast encryption protocols) generate key graphs that have
depth at most logarithmic in the total number of users in the system (again, the depth remains
fixed for arbitrarily long runs of the protocol, once the total space of users has been ascertained).
In general, in all encryption protocols, the depth of key graphs created in any execution is likely
to be related to the number of decryptions performed by users (in order to be able to recover
certain keys or messages) while their total size to the number of users themselves; it is reasonable
to expect that protocol designers, for the purpose of efficiency, would strive to keep the former
smaller than the latter.

We exemplify the power of our soundness result by applying it to the security analysis of
the Logical Key Hierarchy (LKH) protocol [WGL00]. LKH is a protocol originally developed for
secure communication in multicast groups on the Internet (applications of the form we discussed
in the first paragraph) and has since then attracted a lot of interest from both cryptographers and
researchers in the networking community. Surprisingly, even though the protocol gets mentioned
in several papers on cryptography, there has been little effort from within our community towards
analyzing its security (adaptive or otherwise) rigorously or to make any claims to the contrary.

The original LKH protocol has a security flaw in it [MP06]. Although this flaw is quite easy
to spot, we are not aware of any work (prior to ours) that rectifies this flaw in a provably secure
manner. (In [MP06], a fix is suggested but not proven secure.) In Section 3 of this paper, we
present a variant of LKH which is not only as efficient as the original protocol, but also enjoys
strong guarantees of security against adaptive adversaries. In particular, we use our soundness
theorem to show that the security of the improved protocol is related to the semantic security of
the underlying encryption scheme via a reduction factor that is quasi-polynomial in the number
of protocol participants. Concretely, our reduction factor is of the order of ñlog2(n)+2, where n
is the number of users in the protocol and ñ = O(n).

This reduction factor, though not strictly polynomial in n, is still quite reasonable from a
practical perspective. For example, in a system with 128 users, one is guaranteed that an execu-
tion of our protocol provides at least 65 bits of adaptive security when implemented with 128-bit
AES in counter mode (for a run with upto 64 key updates)5. Our result practically eliminates the
need for using expensive techniques like non-committing encryption to build adaptively secure

4This is a necessary criterion if our goal is to guarantee pseudorandomness of these keys.
5 These numbers are computed assuming the protocol is implemented using a binary hierarchy of keys; for

non-binary hierarchies, the security guarantee is actually better. Also, the security bound can be considerably
improved by using 192-bit or 256-bit AES.

4

multicast encryption protocols, and it does this while matching the efficiency of existing schemes.

Relation with Selective Decryption. The abstract game used in our soundness theorem
is reminiscent of the well-studied (though largely unresolved) problem of selective decryption.
In this problem (like in ours), an adversary interacts with a challenger who initially generates
a set of plaintexts m1, · · · ,mn and a corresponding set of keys k1, · · · , kn. (We stress here that
the plaintexts are not chosen by the adversary, but generated by the challenger using some fixed
distribution.) The adversary first wants to see the encryptions of all the plaintexts, {Eki(mi)}

n
i=1,

and later “open” some of them adaptively; that is, he queries an arbitrary set I ⊆ [n] and the
challenger replies with {ki}i∈I . The question now is to show that plaintexts corresponding to
all unopened ciphertexts are still “safe”, in the sense that the adversary cannot learn any more
information about them than what he could learn from the revealed plaintexts. In our soundness
theorem, we are essentially generalizing this game to a setting in which the adversary can ask
for not only single ciphertexts but chains of ciphertexts of the form Ek1(k2), Ek2(k3), Ek3(k4), · · ·
and he is also allowed to open such chains adaptively (as above). Plus, we allow the adversary
to interleave his “encrypt” and “open” queries arbitrarily. (Indeed, the fact that ciphertexts can
be asked for in an adaptive manner, possibly depending upon past corruptions, is responsible for
much of the complication in our proof.) It is for this reason that we refer to our game (detailed
in Section 2) as the generalized selective decryption (GSD) game.

Does this paper solve the selective decryption problem? Not really. A crucial ingredient
of that problem is the distribution from which the plaintexts m1, · · · ,mn are drawn by the
challenger. It has been shown [DNRS03] that if this distribution is such that each plaintext can
be generated independently of the others then the unopened ciphertexts indeed remain secure
and the adversary learns essentially no partial information about the plaintexts they hide from
his interaction with the challenger. In the GSD game, too, we require all keys, even those
which are not used for further encryption, to be generated independently of each other, and this
“independence property” is crucial in our proof6. Our soundness theorem essentially builds up
on this positive result for selective decryption and extends it to the more general scenario of
arbitrarily (and adaptively) generated key graphs. The question of solving selective decryption
without the independence assumption on plaintexts still remains open.

We remark here that independence of all keys is not just a simplifying assumption in our the-
orem; it is almost a requirement for the security of the protocols we are interested in analyzing.
A multicast encryption protocol that uses related keys across key updates may not guarantee
good security at all.

Related Work. The notion of computational soundness theorems was introduced by Abadi
and Rogaway [AR02], and has since then found applications in the security analysis of various
cryptographic tasks, including key exchange [DDMW06, CH06], mutual authentication [MW04,
CH06], XML security [AW05] and multicast key distribution [MP05, MP06]. Although most
of the literature on computational soundness theorems deals with protocols that make use of
encryption as the fundamental primitive, to the best of our knowledge, none of these works
prove soundness in the presence of adaptively corrupting adversaries. Recently, Gupta and
Shmatikov [GS06] developed a symbolic logic that allows reasoning about a weak variant of
adaptive security for the case of key exchange protocols; however, the protocols they analyze,
do not make use of encryption (and instead use Diffie-Hellman exponentiation coupled with

6 Jumping ahead, we remark that even in the variant in which the adversary can acquire encryptions of
arbitrary messages of his choice, we need only keys to be independent of each other, and not the messages.

5

signatures).

The soundness result of this paper is of a very different flavor than those in previous works
in the area. The protocol model we use is relatively simpler—in the protocols we consider,
every message generated during an execution is either a key or an encryption of a key under a
key or else, a sequence of values with one of these types7. Symbolic analysis of such protocols
can be effectively conducted using graph-theoretic terminology: keys can be interpretted as
nodes, ciphertexts as edges, and Dolev-Yao attacks on protocols can be expressed in terms of
reachability from adversarial nodes (corresponding to corrupted keys). As such, all discussions
on symbolic analysis in this paper take place within a graph-theoretic framework (as illustrated
by the GSD game). This simplifies our presentation considerably and brings us quickly to the
crux of the matter.

Lastly, a few words comparing the result of this paper with our previous work, joint with
Micciancio [MP05, MP06], on the computationally sound analysis of encryption protocols are
in order. Although both our works address adaptive attacks on encryption protocols in general,
the adversarial model used in the current work is stronger: we not only allow the adversary to
adaptively modify the execution flow of the protocol (as in our past work) but also to corrupt
participants in an adaptive manner. Tackling the latter type of attacks is significantly more
non-trivial, and is the central theme of this paper. Another important difference is that our
previous soundness results applied only to protocols that satisfied certain syntactic conditions
besides acyclicity of key graphs. Informally, these conditions require protocols to use every key
in two phases—a distribution phase in which keys are used as plaintexts, followed by a deploy-
ment phase in which the distributed keys are used for encrypting other keys or messages. Key
distribution is not allowed to succeed key deployment. Such a condition, though not extremely
restrictive, does raise some concerns. It is not hard to conceive scenarios in which one would
want to distribute previously deployed keys. (In fact, some existing protocols do this, too; e.g.,
the protocol of [PST01] “re-distributes” keys regularly in order to compensate for packet losses.)
Our new result, while incorporating adaptive corruptions, also does away with this restriction.
The downside, however, is that this result provides security guarantees in a manner that is de-
pendent on the depth of protocol key graphs, and it is not meaningful for protocols that generate
arbitrary-depth key graphs. We believe that improving the result of this paper to overcome this
limitation is non-trivial, but a worthy direction for future research; in particular, obtaining an
analogous result with a reduction factor smaller than Θ(nl) would be quite remarkable, and
could lead to even newer techniques to address adaptive corruptions in security protocols.

2 The Main Result

Let Π = (E ,D) be a symmetric-key encryption scheme8. We use the standard notion of indis-
tinguishability against chosen plaintext attacks (Ind-CPA) for encryption schemes as defined
by Bellare et al. [BDJR97]. Let OΠ

k,b denote a left-or-right oracle for Π which first generates
a key k uniformly at random from {0, 1}η (η being the security parameter) and subsequently,

7We remark that extending our result to protocols that use nested encryption is also possible, but the soundness
theorem and the corresponding proof become much more complex. We avoid nested encryption largely for the
sake of simplicity (and partly because most existing multicast encryption protocols don’t use nesting).

8In this paper, we consider encryption schemes where key generation is defined by picking a uniformly random
bitstring from the set {0, 1}η with η being the security parameter. Thus, the key generation algorithm is implicit
in the definition of encryption schemes. We also assume that the encryption scheme allows to encrypt arbitrary
bitstrings; so, keys themselves can always be used as plaintexts.

6

responds to every query of the form (m0,m1) ∈ {0, 1}
∗ × {0, 1}∗ (such that |m0| = |m1|) with

Ek(mb)—the encryption of mb under key k. For any adversary (that is, any arbitrary probabilis-

tic Turing machine) A, let A
OΠ
k,b denote the random variable corresponding to the output of A

when interacting with such an oracle.

Definition 2.1 Let t ∈ IN+ and 0 < ε < 1. An encryption scheme Π is called (t, ε)-Ind-CPA
secure if for every adversary A running in time t, we have

|P[AO
Π
k,b = 1 | b = 0]−P[AO

Π
k,b = 1 | b = 1]| ≤ ε

The GSD game. Consider the following game, which we call the generalized selective decryption
(GSD) game, played between an adversary A and a challenger B, both being given blackbox
access to a symmetric-key encryption scheme Π = (E ,D). The game is parameterized by an
integer n, assumed to be known to both A and B. In the beginning, the challenger generates a
set of keys, k1, k2, · · · , kn, each key being sampled independently and uniformly at random from
the set {0, 1}η (where η is the security parameter). B also generates a challenge bit b, uniformly
at random from {0, 1}, which A is required to guess in the end. It stores the generated values
for the rest of the game, and uses them to answer all of A’s queries.

A can make three types of queries to B:

1. encrypt: At any point, A can make a query of the form encrypt(i, j), in response to
which B creates a ciphertext c ← Eki(kj) (using fresh coins for the encryption operation
each time) and returns c to A.

2. corrupt: A can also ask for the value of any key initially generated by B; it does this by
issuing a query of the form corrupt(i), in response to which it receives ki.

3. challenge: Finally, A can issue a query of the form challenge(i). The response for such
a query is decided based on the bit b: if b = 0, B returns the key ki to A, whereas if b = 1,
it generates a value ri uniformly at random from {0, 1}

η, and sends ri to A9.

Multiple queries of each type can be made, interleavingly and adaptively. We stress here that
A can make more than one challenge queries in the game and it can choose to interleave
its challenge queries with the other two types of queries. (This is a slight generalization of
the setting described in the introduction.) Giving the adversary the power to make multiple
challenge queries models the requirement that keys linked with challenge nodes be “jointly”
pseudorandom (as opposed to individual keys being pseudorandom by themselves). Allowing it
to interleave challenge’s with other queries means that such keys are required to retain their
pseudorandomness even after more corruptions or ciphertext transmissions have occurred.
We think of the queries of A as creating a directed graph over n nodes (labeled 1, 2, · · · , n),

edge by edge, and in an adaptive fashion. Each query encrypt(i, j) corresponds to creating an
edge from i to j, denoted i → j, in this graph. For any adversary A, the graph created by its
queries in this manner is called the key graph generated by A and is denoted G(A). A node i
in G(A) for which A issues a query corrupt(i) is called a corrupt node while one for which A

issues a query challenge(i) is referred to as a challenge node. The set of all corrupt nodes is
denoted V corr(A) and that of all challenge nodes is denoted V chal(A). Note that G(A), V corr(A)
and V chal(A) are all random variables depending on the coins used by both A and B. Without
loss of generality, we assume that V chal(A) is always non-empty and in any execution of A, every

9If A issues multiple challenge queries with argument i and if b equals 1, B must return the same value ri
everytime.

7

node i ∈ V chal(A) has at least one edge incident upon it. (Put differently, this means that A

always makes at least one query of the form challenge(i) and for each such query, it makes at
least one query of the form encrypt(x, i).)

Legitimate Adversaries. There is a trivial way in which any adversary can win in the GSD
game—by corrupting a node i in G(A) and making a query challenge(j) for any j that is
reachable from i, A can easily compute the challenge bit b. The interesting case to consider is,
thus, one in which A is constrained not to issue queries of this form, that is, where A is restricted
to make queries in a manner such that no challenge node is reachable from a corrupt node in
G(A).

Our intuition suggests that if the encryption scheme is secure (in the Ind-CPA sense), then
the chances of such an adversary being able to decipher b correctly are no better than half.
However, translating this intuition into a proof is far from easy. For one, it is not even possible
to do this without further restrictions on the adversary’s queries: if a key kj is used to encrypt
other keys (that is, there exists an edge issuing from j in G(A)), then kj cannot be guaranteed
to remain pseudorandom, even if j is not reachable from the corrupt nodes. In other words, we
can hope to prove pseudorandomness of keys associated with challenge nodes only as long as
these nodes have no outgoing edge in G(A). Secondly, arguing about the security of encryption
schemes in the presence of key cycles is a gruelingly hard problem; in particular, it is currently
not known whether an arbitrary Ind-CPA-secure encryption scheme can be proved to retain its
security in a situation where ciphertexts of the form Ek1(k2), Ek2(k3), · · · , Ekt−1(kt), Ekt(k1), for
some t > 1, are created using it. Standard techniques do not allow to prove such statements
and counterexamples are not known either. Given this state of affairs, our only hope to prove
security in the GSD game is to forbid the creation of key cycles altogether.

We formalize all our requirements from the adversary in the following definition:

Definition 2.2 An adversary A is called legitimate if in any execution of A in the GSD game,
the values of G(A), V corr(A) and V chal(A) are such that:

1. For any i ∈ V corr(A) and any j ∈ V chal(A), j is unreachable from i in G(A).

2. G(A) is a DAG and every node in V chal(A) is a sink in this DAG.

The first condition above is essentially a symbolic security criterion—what it means for the
challenge nodes (or keys) to be secure against a Dolev-Yao adversary. The second condition
spells out the syntactic restrictions that are required to prove the soundness of this symbolic
criterion with respect to the actual (computational) adversary A we are considering.

The Result. Let A be any legitimate adversary playing the GSD game. We say that A is an
(n, e, l)-adversary if in any execution, the number of nodes and edges in the key graph generated
by A are bounded from above by n and e respectively and the depth of the graph (the length of
the longest path in it) is at most l. We denote the random variable corresponding to the output

of A in the game by AB
Π
b .

Definition 2.3 Let t, n, e, l ∈ IN+ and 0 < ε < 1. An encryption scheme Π is called (t, ε, n, e, l)-
GSD secure if for every legitimate (n, e, l)-adversary A running in time t, we have

|P[AB
Π
b = 1 | b = 0]−P[AB

Π
b = 1 | b = 1]| ≤ ε

8

Here, probabilities are taken over the random choices made by both A and B (including the
randomness used by B in creating ciphertexts). The following is the main result of this paper:

Theorem 2.4 Let t, n, e, l ∈ IN+ and 0 < ε < 1. If an encryption scheme Π is (t, ε)-Ind-CPA
secure, then it is (t′, ε′, n, e, l)-GSD secure for quantities t′ and ε′ defined as:

ε′ = ε ·
3n2

2
· (2n+ 1)l−1

t′ = t− (O(n) · tGenKey + e · tEncrypt)

where tGenKey (resp. tEncrypt) denotes the time taken to perform key generation (resp. encryp-
tion) in Π.

Overview of the Proof. The starting point of the proof of our theorem is the positive result
on the selective decryption problem (more precisely, the selective decommitment problem) due
to Dwork et al. [DNRS03]. Consider first the GSD game for the case l = 1. The graph G(A) in
this case is a directed bipartite graph mapping a set of sources to a set of sinks. (In the problem
studied in [DNRS03], the map from sources to sinks is one-to-one. In our case, it could be many-
to-many; plus, it could be adaptively generated based on previous corruptions.) How can we
argue about security in this case? Intuitively, an attacker’s ability to differentiate between real
and random values for all nodes in V chal(A) translates into its ability to differentiate between the
two values for some node (say the jth one) in V chal(A); that is, such an adversary can effectively
differentiate between two worlds, one in which the reply to each of the first j − 1 queries of the
form challenge(i) is ri (and for the rest, it is ki), and the other in which the reply to each of
the first j queries of this form is ri (and that for the rest is ki).

Let us call these worlds Worldj(0) and Worldj(1) respectively. Let us assume that the ar-
gument specified in A’s jth challenge query is known a priori (it can be guessed with success
probability 1/n) and equals ij . Let I(ij) denote the set of nodes is for which there exists an
edge is → ij in G(A). Now consider this modified version of the GSD game: While generating
keys in the beginning, B also generates a random key k̃ij , independently of all other keys. It
replies to the adversary’s queries in one of two worlds again, but now the worlds are defined as
follows. Each query of the form encrypt(is, ij) is replied to with the real ciphertext Ekis (kij) in

the first world, World′j(0), but with a fake one, namely Ekis (k̃ij), in the other one, World′j(1). All
other encrypt queries are replied to with real ciphertexts in both worlds. For the challenge
queries the replies always have the same distribution—ri for the first j − 1 challenge queries
and ki for the rest. (In particular, the reply for challenge(ij) is always kij .)

It is easy to see that the distribution on the challenger’s replies in World′j(0) is exactly
the same as in Worldj(0). (The replies to all encrypt, corrupt and challenge queries are
decided using the same procedure.) The key observation to make here is that the distribution
on the replies in World′j(1) is also the same as that in Worldj(1)! This is true because the keys

kij , k̃ij and rij are generated by the challenger independently of each other, and so, replying to
encrypt(is, ij) with Ekis (kij) and challenge(ij) with rij (as done in Worldj(1)) produces the

same distribution as replying to the former with Ekis (k̃ij) and the latter with kij (as done in
World′j(1)). Thus, our adversary can differentiate between Worldj(0) and Worldj(1) with the
same probability as it can differentiate between World′j(0) and World′j(1).

Why are the two worlds World′j(0) and World′j(1) indistinguishable? Because the encryption
scheme is Ind-CPA-secure. If the adversary can distinguish between two sets of ciphertexts
{Ekis (kij)}is∈I(ij) (the real ones) and {Ekis (k̃ij)}is∈I(ij) (the fake ones) then it must be able to

9

tell the difference between Ekis (kij) and Ekis (k̃ij) for some node is ∈ I(ij). (A standard hybrid
argument applies here10.) This goes against the Ind-CPA-security of Π.

Going beyond l = 1. In the general setting, a node is, pointing at any node ij ∈ V chal(A)
need not be a source—there could be other edges incident upon each such is and extending
the above argument to this general setting requires more work. In order to be able to make a
statement like “the ciphertext Ekis (kij) is indistinguishable from Ekis (k̃ij)”, one must first argue
that every ciphertext of the form Eki′s

(kis) (where i′s → is is an edge in G(A)) looks the same

as one of the form Eki′s
(k̃is) (a fake ciphertext). But every such ki′s could, in turn, be encrypted

under other keys (that is, the node i′s could have other edges incident on it). There could be
a lot of nodes (O(n), in general) from which ij is reachable in G(A) and at some point or the
other, we would need to argue that replying with real ciphertexts created under each of these
nodes is the same as replying with fake ones. Worse still, we do not a priori know the set of
nodes from which ij can be reached in G(A) since the graph is created adaptively; so we must
make guesses in the process.
It is easy to come up with an argument where the amount of guesswork involved is exponential

in n (simply guess the entire set of nodes from which there is a path to ij). In our proof, however,
we take a radically different approach. We first define a sequence of hybrid distributions on the
replies given to A such that in each of the distributions, the replies corresponding to some of the
edges in the key graph are fake, and these “faked” edges are such that their end-points lie on
a single path ending in ij . (Henceforth, we will refer to every edge for which the corresponding
reply is fake, as a faked edge.) The extreme hybrid distributions are defined as in the two worlds
World′j(0) and World′j(1) for l = 1: in one extreme, the replies corresponding to all edges are
real, and in the other extreme, the replies corresponding to all edges incident on ij are fake
(while the rest of the replies are still real). Intermediate to these extremes, however, are several
distributions in which edges other than those incident on ij are faked. For any two adjacent
distributions in the sequence of distributions, the following properties are always satisfied:

(a) The distributions differ in the reply corresponding to a single edge is → it; the reply is
real in one distribution while fake in the other.

(b) In both distributions, for every ir ∈ I(is), the edge ir → is is faked.

(c) There exists a path from it to ij in the key graph and in both distributions, “some”
of the edges incident upon this path are faked, the faked edges being the same in both
distributions.

(d) No other edge in the key graph is faked in either of the distributions.

Properties (a) and (b) are meant to ensure that any two adjacent hybrids can be simulated
using a single left-or-right encryption oracle (and so, A’s capability to distinguish between them
would imply that the encryption scheme is not Ind-CPA-secure); properties (c) and (d) enable
the simulation to be carried out by guessing a path (that goes from is to it to ij) as opposed to
guessing all the nodes from which ij is reachable. (This partly explains why our reduction factor
is exponential in the depth, rather than the size, of the key graph.) In order to simultaneously
achieve all these properties, we order the hybrid distributions such that (i) when the reply for
any edge is → it is changed (from real to fake or vice versa) in moving from one hybrid to
another, all edges of the form ir → is have already been faked in previous hybrids; and (ii) after

10The reduction factor in this hybrid argument would be at most n. This combined with the guessing probability
(1/n) associated with the node ij defined above gives us a gross reduction factor of O(n2), as desired for l = 1.

10

changing the reply for is → it, there is a sequence of hybrids in which the replies for all edges
ir → is are, step by step, changed back from fake to real. This is done in order to satisfy property
(d) above (particularly, to make sure that it is satisfied when the replies for edges issuing from
it are changed in a subsequent hybrid).
Thus, if we scan the sequence of hybrid distributions from one extreme to the other, we ob-

serve both “real-to-fake” and “fake-to-real” transitions in the replies given to A, taking place in
an oscillating manner. The oscillations have a recursive structure—for every oscillation in replies
(transition from real to fake and back to real) for an edge is → it, there are two oscillations
(transition from real to fake to real to fake to real) for every edge ir → is incident upon is. Sim-
ulating these hybrid distributions (using a left-or-right oracle) and subsequently, arguing that
the simulation works correctly is the most challenging part of the proof. After developing an ap-
propriate simulation strategy, we prove its correctness using an inductive argument—assuming
that, for some l′ ≤ l, the simulation behaves correctly whenever is is at depth smaller than l′ in
the key graph, we show that the simulation is correct also when is is at depth smaller than l′+1;
this simplifies our analysis considerably. The details of the proof are given in the appendix of
the paper.

Other Variants. A natural variant of the GSD game would be one in which the adversary is
allowed to acquire encryptions of messages of its choice (besides receiving encryptions of keys,
as in the original game). Consider the following modified version of the game: A issues encrypt
and corrupt queries, as before, but instead of making challenge queries, it makes queries of
the form encrypt msg(i,m0,m1) (such that m0,m1 ∈ {0, 1}

∗ and |m0| = |m1|). In return for
each such query, the challenger sends it the ciphertext Eki(mb). A legitimate adversary in this
modified game would be one whose key graph is always a DAG and for whom every query
encrypt msg(i,m0,m1) is such that i is unreachable from the corrupt nodes in the DAG. (Note:
i need not be a sink in the DAG.) We remark that a result analogous to Theorem 2.4 can also be
proven for this modified game, and with only a slight modification to the proof of that theorem.
Specifically, we can show that if Π is (t, ε)-Ind-CPA secure, then for any t′-time (n, e, l) adversary
A (t′ as defined in Theorem 2.4),

|P[AB
Π
b = 1 | b = 0]−P[AB

Π
b = 1 | b = 1]| ≤ ε ·

3n

2
· (2n+ 1)l

A different variant of our game would be one in which A is provided encryptions of messages,
but these messages are sampled by the challenger using some fixed distribution known to A.
In this variant, the messages themselves can be thought of as nodes (more specifically, sinks)
in the key graph, whose values are hidden from A but whose probability distribution is defined
differently from that of the keys. The goal now would be to argue that from A’s perspective, all
“unopened” messages (that is, messages that are not reachable from corrupt nodes in the key
graph) appear as good as fresh samples from the same message space. If we assume that messages
are sampled independently of each other, then security in this variant can also be proven, and
with almost the same reduction factor as in Theorem 2.4. (Specifically, the reduction factor
would be (3/2) ·Mn(2n + 1)l, where M is an upper bound on the total number of messages
that are encrypted.) However, in the absence of this assumption, it becomes considerably more
challenging to prove the same claim. The techniques developed in this paper do not allow us to
argue about security in such a setting, not even in the case where the key graph has depth 0
(only messages, and not keys, are used as plaintexts)11.

11Here, by “argue about security” we mean the following: Consider an adversary A who makes only encrypt

and corrupt queries in the above variant of the GSD game. At the end of the game, give the adversary one out

11

3 The Application

In this section, we illustrate how our result from Section 2 applies to the security analysis of
multicast encryption protocols.

Multicast Encryption. A group of n users, labeled U1, · · · , Un, share a broadcast channel
and wish to use it for secure communication with each other. At any point in time t, only a
subset of users, labeled St, are “logged in” to the network, that is, are authorized to receive
information sent on the channel. We would like to ensure that for all t, only the users in St

(called group members) be able to decipher the broadcasts. We assume the existence of a central
group manager C who shares a unique long-lived key kUi with each user Ui

12 and runs a key
distribution program, KD, in order to accomplish the said task. The manager (or, equivalently,
the program KD) receives user login and logout requests13 and for the request at time t, sends
out a set of rekey messages,Mt, on the channel. These rekey messages carry information about
a key k[t] (the group key for t), and are such that only the group members can decipher them
(and, subsequently, recover k[t]). The key k[t] can then be used to carry out all group-specific
security tasks until the next login/logout request arrives, which, we assume, happens at time
t+1. For example, it can be used for ensuring privacy of all data sent between time t and t+1
and/or guaranteeing “group authenticity” of data (that is, enabling members to verify that the
sender of the data is a group member at time t, and not an outsider). To ensure security of any
such task, it is important to guarantee that k[t] appears pseudorandom to users not in St (the
non-members) for all instants t, even when such users can collude with each other and share
all their information. The problem is to design the program KD in a manner such that this
guarantee is achieved.

Fiat and Naor [FN93] were the first to define this problem formally and they introduced
it under the title of broadcast encryption—a formulation in which all users are assumed to be
stateless and group members are required to be able to recover k[t], given only Mt and their
long-lived keys. Subsequent work (for example, [Mit97, WGL00]) lifted the problem to the more
general setting of stateful users, and studied it in the context of ensuring privacy in multicast
groups on the Internet (hence the name multicast encryption). LKH is a protocol that relies on
the statefulness assumption.

The Protocol. A trivial approach to multicast key distribution would be to have the center
generate a new, purely random key k[t] for every group membership change, and to letMt (the
rekey messages for time t) be the set of ciphertexts obtained by encrypting k[t] individually
under the long-lived keys of every user in St, that is, the set {EkUi (k[t])}Ui∈St

. This, however,
is an unscalable solution since it involves a linear communication overhead per membership
change, which is prohibitive for most applications that use multicast.

The LKH protocol betters the above trivial approach by distributing to users, in addition to
the group key, a set of auxiliary keys, with each auxiliary key being given to some subset of the

of two sets of values—in one world, reveal the real values of all unopened messages, and in the other, provide an
equal number of messages that are sampled from the probability space of the unopnened messages, conditioned

on the values of the already-opened messages. Now show that A cannot distinguish between these two worlds.
This problem is essentially the same as the version of the selective decryption problem where plaintexts are not
assumed to be independent of each other. We don’t know of any solution to the problem yet.
12 In practice, such long-lived keys could be established during the first login request made by users using, say,

public-key based approaches.
13 In some scenarios, the logout operations may be “forced”; that is, the manager may proactively revoke some

user(s) (as a punishment for not paying subscription fees in time and/or indulging in piracy).

12

!!!!!"!"!!""

!#
"#"!$%&

!!!"

!U1 !U2 !U3 !U4 !U5 !U6 !U7 !U8

'0 #"()1*")2*")3*")6*")7+

(a)

!!
"

!!!
"

!!"

!#

!"

!""!"!

!U1 !U2 !U3 !U4 !U5 !U6 !U7 !U8

#1 $%&'2(%'3(%'6(%'7)

!#
%%$%!*"+

!"#"$%

"

(b)

!!

!!!
!!"

!"#$%

"2 #$%&2'$&3'$&6'$&7'$&8(

!"
)

!"!

!U1 !U2 !U3 !U4 !U5 !U6 !U7 !U8

!#
)

!""
)

!##!*+,
+

!!
+

!!!
+

(c)

!!

!!!

!"#$%
!U6 !U7 !U8

!!"

"2 #$%&2'$&3'$&6'$&7'$&8(

!"
)

!"!

!U1 !U2 !U3 !U4 !U5

!#
)

!""
)

!##!*+,
+

!!
+

!!!
+

(d)

Figure 1: LKH and rLKH: Figure 1(a) shows how key distribution to the initial set of users
S0 is performed while figure 1(b) demonstrates the rekeying process for user logout (both these
procedures are the same in LKH and rLKH). Figure 1(c) shows how rekeying for user login
works in LKH and fig. 1(d) illustrates the same for rLKH.

current group members. All keys in the system are organized in the form of a hierarchy—the
group key is associated with the root node in the hierarchy, the long-lived keys of users with
the leaves, and the auxiliary keys with internal nodes. At each point in time t, a user Ui ∈ St

knows all keys on the path from the leaf node corresponding to kUi to the root node (which
corresponds to k[t]). The protocol maintains this property as an invariant across membership
changes.

Rekey Messages. For simplicity, we illustrate the protocol using an example where n = 8
and the key hierarchy is binary. (So the height of the hierarchy is log2(8) = 3.) We assume that
all parties (including the center) have blackbox access to a symmetric-key encryption scheme
Π = (E ,D) with key space {0, 1}η for some fixed security parameter η. In our description, we
use the terms “keys” and “nodes” interchangeably (the relation between them is obvious in the
current context) and depict transmission of a ciphertext Ek1(k2) with an edge k1 → k2 in the
figures.

Suppose that initially (t = 0), the set of group members S0 = {U1, U2, U3, U6, U7} as shown in
Figure 1(a). The center’s key distribution program KD generates the initial group key k[0] = kε

13

(the root node) and all auxiliary keys (internal nodes) which are supposed to be given to users in
S0. For example, since k00 and k0 lie on the path from kU1 to k[0], these keys must be generated
afresh and sent securely to U1. KD transmits the keys to the designated users by sending the
ciphertexts shown by dark edges in the figure. So, for example, user U1 can obtain all the keys
it is supposed to know (k00, k0, kε) by decrypting, in order, the ciphertexts EkU1 (k00), Ek00(k0)
and Ek0(kε).
Now suppose that at time t = 1, user U1 logs out of the group. That is, S1 = {U2, U3, U6, U7}.

The program KD should re-generate the group key kε, and the auxiliary keys which were known
to U1 at t = 0 (k00 and k0) and distribute the new values in a manner such that U1 cannot
recover them but other users who are required to do so (according to the protocol invariant)
still can. Specifically, it generates new keys k100, k

1
0 and k1ε =: k[1] (independently and uniformly

at random) and sends out the ciphertexts shown in figure 1(b). Thus, every rekey operation for
a user logout requires sending logarithmically many (specifically, 2 log2(n)− 1) ciphertexts; in
our example, this number is 5.

The Flaw and the Fix. The flaw in the original LKH protocol lies in the way it implements
rekeying for user login operations. Suppose U8 sends a login request at time t = 2. The
center must now re-generate keys k11, k1, kε and send them securely to all the designated users
(including U8). The protocol does this by transmitting the ciphertexts shown in figure 1(c).
(k211, k

2
1, k

2
ε denote the newly generated keys.) Sending the old values of any of these keys, even

the auxiliary ones, to U8 (that is, encrypted under the key kU8) could potentially allow U8 to
recover past group keys, which must be prevented. (For example, if only the group key was
generated afresh and the keys k1, k11 were transmitted to U8 as is (though encrypted under
kU8), U8 could use k1 and the transmissions at t = 1 to recover k[1].) For this reason, LKH
generates fresh values for k11 and k1 in our example.
Note that the group key at t = 1, k[1] = k1ε , is used to encrypt the group key at t = 2, k2ε .

This is a problem since our initial goal was to guarantee pseudorandomness of all group keys
but deploying k[1] in this manner clearly fails that purpose. In principle, if k[1] is used in keying
other applications (for example, in a message authentication scheme) at t = 1, and is also used
for rekeying in the manner shown, then the protocol could be completely subverted (both the
keys k[1] and k[2] fully recovered) even by a passive eavesdropper on the channel. Of course,
this does not mean that the protocol is broken for any secure implementation of the encryption
scheme; but for some (albeit contrived ones), it is.
We propose to fix the LKH protocol by changing the rekeying procedure for user logins as

shown in Figure 1(d). (We remark that this fix is different from the one suggested in [MP06].)
Notice that the communication cost incurred is the same as in the original protocol (2 log2(n)
ciphertexts for a user space of size n). Notice also that the structure of the rekey messages is
now similar to that of the messages sent upon a user logout request (figure 1(b)). We refer
to this modified version of LKH as “rLKH” (the r stands for “repaired”). The protocol can
be easily generalized to work with arbitrary hierarchies (as opposed to the binary one in our
example); in particular, when the key hierarchy is a d-ary tree (so its height equals dlogd(n)e), the
communication complexity (number of ciphertexts transmitted) of rekeying would be ddlogd(n)e
for user logins and ddlogd(n)e − 1 for user logouts. An implementation of rLKH with n users
and a d-ary hierarchy is referred to as the (n, d)-instance of the protocol.
One could conceive other ways of fixing the user login process of LKH (possibly as secure

and as efficient as the one we propose). We prefer this fix for various reasons: (a) the key
hierarchy in rLKH has the nice property that at all instants, every auxiliary key (and even the
group key) is transmitted to the legitimate recipients by encrypting it under its two children only

14

(and no other keys). This property could potentially simplify implementation of the protocol in
practice. (b) rekeying is possible using encryption alone (without requiring other cryptographic
primitives); thus, the security of the protocol rests upon the secure implementation of a single
primitive, which, we believe, makes for good cryptographic design; (c) most importantly, our
fix ensures that the depth of the key graph generated by all ciphertexts remains logarithmic in
the size of the group (does not grow with time); this property is useful in arguing about the
protocol’s adaptive security.

Adaptive Security. Let KD be an n-user multicast key distribution program. We define
adaptive security of KD using the following game (which we call the MKD game) played be-
tween an adversary A and a challenger B. Initially, B generates the long-lived keys of all users
kU1 , · · · , kUn (randomly, independently from the underlying key space) and also generates a ran-
dom challenge bit b. A specifies the initial set of group members, S0, in response to which KD

is invoked and the initial key distribution messages,M0, returned to A. Subsequently, A issues
multiple queries to B, each query being either:

1. a rekey query—at any instant t, A can issue a query of the form rekey(command, Ui) where
command is either login or logout. In response, B runs KD based on the membership
change command specified and returns the set of rekey messagesMt to A; OR

2. a corrupt query—A can also issue queries of the form corrupt(Uj), in return for which B

sends it the key kUj ; OR

3. a challenge query—finally, A can issue a challenge query at any instant t; in response, it
is given the key k[t] if b = 0, or a fresh key r[t] (sampled independently and uniformly at
random from {0, 1}η) if b = 1.

All queries can be issued interleavingly and adaptively. Let U corr(A) be the set of all users
corrupted by A during the game. Let T chal(A) be the set of instants t at which A issues a
challenge query. We say that A is legitimate if in every execution of A in the MKD game, its
queries satisfy:




⋃

t∈T chal(A)

St



 ∩ U corr(A) = ∅

Let AB
KD

b denote the random variable corresponding to the output of A in the game, condi-
tioned on the event that B selects b as the challenge bit.

Definition 3.1 Let t, r ∈ IN+ and 0 < ε < 1. A multicast key distribution program KD is
(t, r, ε)-secure against adaptive adversaries if for every legitimate adversary A that runs in time
t, and makes r rekey queries:

|P[AB
KD

b = 1 | b = 0]−P[AB
KD

b = 1 | b = 1]| ≤ ε

On the lines of the above definition, one can also define the problem of multicast encryption (or,
for that matter, any security task based on multicast key distribution). For example, consider
a multicast encryption protocol ME constructed using a key distribution program KD and an
encryption scheme Π = (E ,D) as follows: the protocol distributes rekey messages for every
group membership change just as KD but besides this, it also encrypts arbitrary messages—
upon receiving a message m to encrypt at time t, the protocol outputs Ek[t](m). Security of

15

such a scheme can be defined using a game similar to the MKD game, but with one change—
every time the adversary issues a challenge query, it also specifies two messages (m0,m1)
(m0,m1 ∈ {0, 1}

∗, and |m0| = |m1|) and the challenger replies with Ek[t](mb) (k[t] being the
current group key). It is possible to show that if KD is (t, r, ε)-secure against adaptive adversaries,
and Π is (t, ε′)-Ind-CPA secure, then ME is (O(t), r, 2ε+ ε′)-secure against adaptive adversaries.

In general, the problems of multicast key distribution and multicast encryption are equivalent
to each other but studying the key distribution problem is more natural since it allows to
generically build protocols for any security task (not necessarily multicast encryption) that can
be accomplished using shared group keys. For this reason, we have focussed our attention on
the key distribution problem alone, and discuss the security of rLKH in the same context.

Theorem 3.2 Let n, d, t, r′ ∈ IN+ such that 1 < d ≤ n. Let 0 < ε < 1. The (n, d)-instance of
rLKH, when implemented using a (t, ε)-Ind-CPA secure encryption scheme Π, is (t′, r′, ε′)-secure
against adaptive adversaries for

ε′ = ε ·
3ñ2

2
· (2ñ+ 1)dlogd(n)e−1

t′ = t− (O(ñ) · tGenKey + (r
′ddlogd(n)e) · tEncrypt)

Here, ñ = max{n, ddlogd(n)e−1+ r′} and tGenKey (resp. tEncrypt) is the time taken to perform key
generation (resp. encryption) in Π.

The proof of this theorem follows almost immediately from our soundness result of Section 2,
given that (a) the key graph generated by any execution of rLKH is acyclic; (b) all group keys
correspond to sinks in the protocol key graph; (c) the depth of the graph remains dlogd(n)e
throughout; and (d) for any r′-round execution of the protocol, and for all t ≤ r′, the group
key k[t] can be reached from a long-lived key kUi if and only if Ui ∈ St. (The last part can be
proven using a straightforward inductive argument, with the induction being performed on r ′.)
The reduction factor given in the theorem is slightly better than what one gets using a direct
invocation of Theorem 2.4: this is achieved using the fact that in any r′-round execution of the
rLKH protocol, (a) a key at depth i in the key graph (that is, at distance i from some source)
is encrypted only by keys at depth i− 1 and (b) there are at most ddlogd(n)e−1 + r′ keys at any
depth in the graph (and at most n sources in it). Note that our reduction factor is exponential
in dlogd(n)e which is independent of the number of rounds the protocol is executed for. That is,
the adaptive security of rLKH degrades polynomially (and not exponentially) with the number
of rounds in the protocol execution.

Changing the hierarchy structure in rLKH involves a natural trade-off between efficiency and
security: If we increase the arity d of the hierarchy (and correspondingly, reduce the height), the
communication efficiency of the protocol suffers, but we get a better guarantee on its adaptive
security. The extreme case is the n-ary hierarchy that has a linear rekeying communication
complexity but provides adaptive security via a reduction factor of only O(ñ2). (Note that this
is exactly the trivial approach to key distribution we discussed earlier on.) Whether or not one
can further improve this trade-off between efficiency and security across different instances of
rLKH, and, in particular, prove its adaptive security via a reduction factor smaller than the one
given in Theorem 3.2, assuming only the semantic security of Π, is a question left open by this
work.

16

Acknowledgements

Many thanks to my advisor, Daniele Micciancio, for providing detailed feedback on the paper
and pointing out a bug in an earlier version of the proof of Theorem 2.4. Thanks also to the
anonymous reviewers of TCC and to my colleagues, Thomas Ristenpart and Scott Yilek, for
commenting on an earlier draft.

References

[AKI03] Nuttapong Attrapadung, Kazukuni Kobara, and Hideki Imai. Broadcast encryption
with short keys and transmissions. In M. Yung, editor, Proceedings of the 2003
ACM workshop on Digital rights management (DRM), pages 55–66, Washington,
DC, USA., October 2003. ACM Press, New York, NY, USA.

[AR02] Martin Abadi and Philip Rogaway. Reconciling two views of cryptography (the
computational soundness of formal encryption). Journal of Cryptology, 15(2):103–
127, 2002.

[AW05] Martin Abadi and Bogdan Warinschi. Security analysis of cryptographically con-
trolled access to xml documents. In Proceedings of the 24th ACM Symposium on
Principles of Database Systems (PODS), pages 108–117, Baltimore, Maryland, June
2005. ACM.

[BDJR97] Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. A concrete security
treatment of symmetric encryption. In 38th Annual Symposium on Foundations of
Computer Science, pages 394–403. IEEE Computer Society Press, October 1997.

[BGW05] Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast en-
cryption with short ciphertexts and private keys. In V. Shoup, editor, Advances in
Cryptology - CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science,
pages 258–275, Santa Barbara, CA, USA, August 2005. Springer Verlag, Berlin,
Germany.

[BH92] Donald Beaver and Stuart Haber. Cryptographic protocols provably secure against
dynamic adversaries. In Rainer A. Rueppel, editor, Advances in Cryptology – EU-
ROCRYPT’92, volume 658 of Lecture Notes in Computer Science, pages 307–323.
Springer-Verlag, May 1992.

[CFGN96] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure mul-
tiparty computation. In 28th Annual ACM Symposium on Theory of Computing,
pages 639–648. ACM Press, May 1996.

[CH06] Ran Canetti and Jonathan Herzog. Universally composable symbolic analysis of
mutual authentication and key exchange protocols. In Shai Halevi and Tal Ra-
bin, editors, TCC ’06: Third Theory of Cryptography Conference, volume 3876 of
Lecture Notes in Computer Science, pages 380–403. Springer-Verlag, 2006.

[CHK05] Ran Canetti, Shai Halevi, and Jonathan Katz. Adaptively secure non-interactive
public key encryption. In Joe Kilian, editor, TCC ’05: Second Theory of Cryptogra-
phy Conference, volume 3378 of Lecture Notes in Computer Science, pages 150–168.
Springer-Verlag, February 2005.

17

[DC06] Yitao Duan and John Canny. How to construct multicast cryptosystems provably
secure against adaptive chosen ciphertext attacks. In David Pointcheval, editor, CT-
RSA’06: RSA Conference, Cryptographers’ Track, volume 3860 of Lecture Notes in
Computer Science, pages 244–261. Springer-Verlag, February 2006.

[DDMW06] Anupam Datta, Ante Derek, John Mitchell, and Bogdan Warinschi. Computation-
ally sound compositional logic for key exchange protocols. In 19th IEEE Computer
Security Foundations Workshop (CSFW ’06), pages 321–334. IEEE Computer So-
ciety, 2006.

[DNRS03] Cynthia Dwork, Moni Naor, Omer Reingold, and Larry Stockmeyer. Magic func-
tions. Journal of the ACM, 50(6):852–921, 2003.

[FN93] Amos Fiat and Moni Naor. Broadcast encryption. In Douglas R. Stinson, editor,
Advances in Cryptology – CRYPTO’93, volume 773 of Lecture Notes in Computer
Science, pages 480–491. Springer-Verlag, August 1993.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28:270–299, 1984.

[GS06] Prateek Gupta and Vitaly Shmatikov. Key confirmation and adaptive corruptions in
the protocol security logic. In FCS-ARSPA 2006 (Joint Workshop on Foundations
of Computer Security and Automated Reasoning for Security Protocol Analysis),
2006.

[Mit97] Suvo Mittra. Iolus: A framework for scalable secure multicasting. In Proceedings
of ACM SIGCOMM, pages 277–288, Cannes, France, September 14–18, 1997.

[MP05] Daniele Micciancio and Saurabh Panjwani. Adaptive security of symbolic encryp-
tion. In J. Kilian, editor, Theory of Cryptography Conference, TCC 2005, volume
3378 of Lecture Notes in Computer Science, pages 169–187, Cambridge, MA, USA,
February 2005. Springer-Verlag, Berlin, Germany.

[MP06] Daniele Micciancio and Saurabh Panjwani. Corrupting one vs. corrupting many:
The case of broadcast and multicast encryption. In Automata, Languages, and
Programming: 33rd International Colloquium, ICALP 2006, Proceedings, Part II,
volume 4052 of Lecture Notes in Computer Science. Springer-Verlag, January 2006.

[MW04] Daniele Micciancio and Bogdan Warinschi. Soundness of formal encryption in the
presence of active adversaries. In Moni Naor, editor, TCC 2004: 1st Theory of
Cryptography Conference, volume 2951 of Lecture Notes in Computer Science, pages
133–151. Springer-Verlag, February 2004.

[NNL01] Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing schemes for
stateless receivers. In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001,
volume 2139 of Lecture Notes in Computer Science, pages 41–62. Springer-Verlag,
August 2001.

[PST01] Adrian Perrig, Dawn Song, and Doug Tygar. ELK, a new protocol for efficient large-
group key distribution. In IEEE Symposium on Security and Privacy, Oakland, CA,
USA, May 2001. IEEE Computer Society Press.

18

[WGL00] Chung Kei Wong, Mohamed Gouda, and Simon S. Lam. Secure group commu-
nications using key graphs. IEEE/ACM Transactions on Networking, 8(1):16–30,
February 2000.

A Proof of Theorem 2.4

Let A be a legitimate (n, e, l)-adversary playing the GSD game, and suppose that the encryption
scheme Π in the game is (t, ε)-Ind-CPA secure. Suppose that A runs in time t′ and is able to win
the game with advantage greater than ε′ (t′ and ε′ as defined in Theorem 2.4); that is, suppose
that

∆GSD(A) := |P[AB
Π
b = 1 | b = 0]−P[AB

Π
b = 1 | b = 1]| > ε′ (1)

Given such an adversary, we will construct another adversary A′ that runs in time t and,
using blackbox access to A, is able to break the encryption scheme Π with advantage greater
than ε. That is, we will construct an A′ with the property that

∆Ind-CPA(A
′) := |P[A′O

Π
k,b = 1 | b = 0]−P[A′O

Π
k,b = 1 | b = 1]| > ε (2)

This would contradict the (t, ε) security of Π, hence implying that our assumption about A

was incorrect.

A.1 The Reduction

For any positive integer i, we use [i] to denote the set {1, · · · , i}. Any path in the graph G(A)
generated by A can be represented using a sequence of length l+1 as follows: First, write down
the nodes in the path in the order of their occurrence from start to end. Then, if the path is
of length smaller than l (has fewer than l + 1 nodes), prepend this sequence with a 0 as many
times as is required to make its length equal l + 1. For example, a path i1 → i2 → i3 (with 2
edges only) would be represented under this convention as:

(0, 0, · · · , 0
︸ ︷︷ ︸

(l−2) times

, i1, i2, i3)

We say that a sequence of values from {0, 1, · · · , n} is a valid path in G(A) if it is a representation
(defined as above) of a path that exists in G(A).

Our construction of the adversary A′ is organized in two parts. In the first part, called
the setup phase (Figure 2), A′ generates all keys required to reply to A’s queries and some
other random values which are used to form the replies. (The italicized comments embedded
in Figure 2 give some intuition about the semantics of these random values.) The second part
of A′—the execution phase—which is shown in Figure 3, is the one in which A′ runs A (in a
blackbox manner) and simulates replies to all its queries; the replies to some of the queries
(namely, queries of the form encrypt(s, x) where s is as decided in the setup phase) are given
using the left-or-right oracle OΠ

k,b.

It is easy to check that the running time of A′ is bounded from above by t′+O(n) · tGenKey+
e · tEncrypt, which is the same as the quantity t in Theorem 2.4.

19

Phase I: Setup

(Generating keys and preparing to reply to A’s queries)

001. Sample l − 1 numbers u0, u1, · · · , ul−2 independently from the set {0, 1, 2, · · · , n} such
that for each j ∈ {0, 1, · · · , l − 2}, the following holds:

∀i ∈ [n] : P[uj = i] = 2
2n+1 ; and

P[uj = 0] =
1

2n+1

Sample ul−1 and ul independently and uniformly at random from [n].
(The sequence (u0, u1, · · · , ul) is A′’s “guess” for a path; a successful execution of
A′ will be one in which this sequence is a valid path in G(A). Note that we do not
rule out repetitions amongst the uj’s—it is possible that uj = uj′ for some j 6= j′—
even though the resulting sequences are bound to be invalid. This is done only for the
sake of simplicity. (The reduction factor is not significantly improved by avoiding this
triviality.) The choice for the specific distribution of the uj’s defined above will be
clearer after seeing the analysis of A′.)

002. Let us be the first non-zero value in the sequence (u0, u1, · · · , ul−1, ul).
(us is the start node of the path guessed by A′. While replying to A’s queries, A′ will
associate the key k used by its encryption oracle OΠ

k,b, with us. Note that s ≤ l − 1
always.)

003. Sample l − s− 1 values bs, bs+1, · · · , bl−2 independently and uniformly at random
from {0, 1}. Let bl−1 = 0.
(Roughly, these bit values determine which of the edges in the path (us, us+1, · · · , ul)
are replied to with “fake” ciphertexts and which are not. For their exact semantics,
see the execution phase of A′.)

004. Generate keys k1, · · · , kus−1, kus+1, · · · , kn randomly and independently from {0, 1}
η.

Also generate (random, independent) keys rus , rus+1 , · · · , rul from the same space.
(The ri’s are used in creating “fake” ciphertexts in the execution phase.)

Figure 2: The first phase of the adversary A′.

A.2 The Analysis.

For any execution of A, the transcript of that execution is the sequence of queries made by
and replies given to A; formally, it is the sequence (q1, r1, q2, r2, · · · , qf , rf), where f is the total
number of queries made by A in that execution, and for every i ∈ {1, · · · , f}, qi is the ith query
of A and ri is the reply received for qi. The view of A, given a fixed procedure for deciding replies
to its queries, is the distribution over all possible transcripts that can be generated by executing
A and replying to it using the said procedure. The variables G(A), V chal(A) and V corr(A) are
all functions of the view of A, that is, their distribution depends not only on the coins used
by A but also on the procedure used to reply to A’s queries. For the most of our analysis, we
will be concerned with the view of A in its interaction with A′, that is, when the procedure
for replying to A’s queries is as shown in figures 2 and 3. Thus, unless otherwise specified,
G(A), V chal(A), V corr(A) should be treated as random variables defined for this particular view.

20

Phase II: Execution

(Running A and simulating replies to its queries)

100. Initialize an array of boolean values seen[s], seen[s+ 1], . . . , seen[l − 1]; set each to false.
200. Run A. When A issues a query encrypt(x, y), do the following—
210. If x = us ∧ y = us+1,

Set seen[s] to be true.
If bs = 0, reply with O

Π
k,b(kus+1 , rus+1).

If bs = 1, reply with O
Π
k,b(rus+1 , kus+1).

220. If x = us ∧ y /∈ {us+1, · · · , ul−1, ul},
Reply with OΠ

k,b(ky, ky).

230. If y = us,
Reply with Ekx(rus). (Since A′ does not know the value of k—the key associated
with us—its reply to every edge x→ us created by A is a fake ciphertext.)

240. For every j ∈ {s, · · · , l − 1}, do the following:
241. If x 6= uj ∧ y = uj+1 ∧ ¬seen[j],

If x 6= us, reply with Ekx(ruj+1); else, reply with O
Π
k,b(ruj+1 , ruj+1).

242. If x 6= uj ∧ y = uj+1 ∧ seen[j],
If x 6= us, reply with Ekx(kuj+1); else, reply with O

Π
k,b(kuj+1 , kuj+1).

243. If x = uj ∧ y = uj+1 ∧ j > s, (Note: The case x = us, y = us+1 is addressed above)
Set seen[j] to be true.
If bj = bj−1, reply with Ekuj (kuj+1).

If bj 6= bj−1, reply with Ekuj (ruj+1).

250. If none of the above conditions are satisfied, reply with Ekx(ky).

300. When A issues a query corrupt(x), do the following—
If x 6= us, return kx to A.
If x = us, output a random bit. Halt!

400. When A issues a query challenge(x), do the following—
Reply with kx if either of the following is true:

(a) x = ul.
(b) x 6= ul but the query challenge(ul) has been made (and replied to) already.

Otherwise, reply with a fresh, random sample from {0, 1}η.
(We stress that the reply for the query challenge(ul) is always kul. Also, until the
query challenge(ul) is made, the reply to every query of the from challenge(x) is a
random value, sampled independently of kx.)

(Following are some “bad” conditions under which A′ fails in its simulation.)
500. If at any point during or after the execution of A, it is found that:

(a) (u0, · · · , ul) is not a valid path in G(A); OR
(b) ul /∈ V chal(A),

Then output a random bit. Halt!

600. In the end, output whatever A outputs.

Figure 3: The second phase of the adversary A′.

21

Let Bad be the event that A′’s simulation of replies to A’s queries is unsuccessful, that is,
the values u0, · · · , ul that it selects are such that:

(a) ul /∈ V chal(A); OR

(b) (u0, u1, · · ·ul−1, ul) is not a valid path in G(A).

Roughly speaking, the occurrence of Bad is computationally independent of the choice of the bit
b for otherwise we would be contradicting the Ind-CPA security of Π. This is formalized in the
following proposition:

Proposition A.1
∆Bad := |P[Bad | b = 0]−P[Bad | b = 1]| ≤ ε

Proof Sketch: The proof uses a straightforward reduction argument. Suppose that the state-
ment is false, that is, ∆Bad > ε. Modify the code of A′ slightly such that if at any point during
the simulation of A the event Bad occurs, the code outputs 1 (instead of a purely random bit).
The resulting code gives us an adversary that defies the (t, ε) security of Π.
Let OA′ denote the event that A′ outputs 1 when given access to a left-or-right oracle OΠ

k,b.
Our goal is to bound the Ind-CPA advantage of A′, which can now be re-written as

∆Ind-CPA(A
′) = |P[OA′ | b = 0]−P[OA′ | b = 1]|

Let us expand this quantity based on the occurrence/non-occurrence of event Bad. Below and
for the rest of the proof, we use the shorthand A;B to denote A ∧B for any two events A and
B.

∆Ind-CPA(A
′) = |

(
P[OA′ ;Bad | b = 0]−P[OA′ ;Bad | b = 1]

)

+ (P[OA′ ;Bad | b = 0]−P[OA′ ;Bad | b = 1]) |

≥ |P[OA′ ;Bad | b = 0]−P[OA′ ;Bad | b = 1]|

− |P[OA′ ;Bad | b = 0]−P[OA′ ;Bad | b = 1]|

= |P[OA′ ;Bad | b = 0]−P[OA′ ;Bad | b = 1]|

− |P[OA′ | b = 0;Bad]
︸ ︷︷ ︸

= 1
2

·P[Bad | b = 0]−P[OA′ | b = 1;Bad]
︸ ︷︷ ︸

= 1
2

·P[Bad | b = 1]|

= |P[OA′ ;Bad | b = 0]−P[OA′ ;Bad | b = 1]| −
1

2
·∆Bad

≥ |P[OA′ ;Bad | b = 0]−P[OA′ ;Bad | b = 1]| −
ε

2
(3)

(Follows from Prop. A.1)

Let ∆ := P[OA′ ;Bad; b = 0]−P[OA′ ;Bad; b = 1]. Inequality 3 can be re-written in terms of
∆ as follows:

∆Ind-CPA(A
′) ≥ |P[OA′ ;Bad | b = 0]−P[OA′ ;Bad | b = 1]| −

ε

2

=

∣
∣
∣
∣

P[OA′ ;Bad; b = 0]

P[b = 0]
−
P[OA′ ;Bad; b = 1]

P[b = 1]

∣
∣
∣
∣
−

ε

2

=

∣
∣
∣
∣

P[OA′ ;Bad; b = 0]

1/2
−
P[OA′ ;Bad; b = 1]

1/2

∣
∣
∣
∣
−

ε

2

= 2 ·
∣
∣P[OA′ ;Bad; b = 0]−P[OA′ ;Bad; b = 1]

∣
∣−

ε

2

= 2 · |∆| −
ε

2

22

We will now focus our attention on bounding the quantity ∆. Let

α =
1

n2 · (2n+ 1)l−1
(4)

We will aim to show that:

Lemma A.2 |∆| > αε′

2

From this, the theorem would follow immediately using the following chain of inequalities:

∆Ind-CPA(A
′) ≥ 2 · |∆| − ε/2

> 2 ·
αε′

2
−

ε

2
(Plugging in Lemma A.2)

= αε′ −
1

2
·
2αε′

3
= αε′ −

αε′

3
=
2αε′

3
= ε

which is what our initial goal—inequality 2—was.

A.2.1 Proof of Lemma A.2

Let OA be the event that A′ completes the execution of A successfully (event Bad does not occur)
and the latter outputs 1 after termination. Observe that if Bad is known not to occur, the events
OA and OA′ are exactly the same; that is, P[OA′ | Bad] = P[OA | Bad]. Using this observation,
we can re-write ∆ as

∆ = P[OA;Bad; b = 0]−P[OA;Bad; b = 1]

Let G denote the event Bad. (G stands for Good.) We will first break up this event into l
mutually exclusive events G0,G1, · · · ,Gl−1 as follows: for each j ∈ {0, · · · , l − 1}, define Gj as
the event that the values u0, u1, · · · , ul selected by A′ satisfy the following three conditions:

(a) ul ∈ V chal(A);

(b) (u0, u1, · · · , ul) is a valid path in G(A);

(c) u0 = u1 = · · · = uj−1 = 0 but uj 6= 0. (In other words, the value of s decided in line 002
of A′’s setup phase is j.)

Condition (c), together with (b), implies that for all j ′ ∈ {j, j+1, · · · , l}, uj′ 6= 0. It is fairly
obvious that for any distinct j and j ′ (in {0, · · · , l− 1}), Gj and Gj′ are mutually exclusive and

that G =
∨l−1

j=0 Gj . For each j ∈ {0, · · · , l − 1}, define the following quantity

∆j := P[OA;Gj ; b = 0]−P[OA;Gj ; b = 1]

∆ can be expressed in terms of these quantities as follows:

23

∆ = P[OA;Bad; b = 0]−P[OA;Bad; b = 1]

= P[OA;
l−1∨

j=0

Gj ; b = 0]−P[OA;
l−1∨

j=0

Gj ; b = 1]

=
l−1∑

j=0

(P[OA;Gj ; b = 0]−P[OA;Gj ; b = 1])

=
l−1∑

j=0

∆j (5)

We will now work towards breaking down the events G0, · · · ,Gl−1 further and correspond-
ingly, expressing the ∆j ’s as summations of more detailed terms. For this, we need some more
definitions.
Consider A’s interaction with A′. For any of the values uj selected by A′, we denote (the

random variable corresponding to) the in-degree of uj in the graph G(A) created during this
interaction by Indegree(uj). (If uj = 0, we define Indegree(uj) to be 0.) We think of nodes in
V chal(A) to be ordered according to their occurrence as arguments of challenge queries; so, in
the sequel, whenever we say that ul is “the ilth node in V

chal(A)”, we imply that challenge(ul) is
the ilth among all challenge queries received by A′ from A. Likewise, for any two values uj−1, uj ,
whenever we say that uj−1 is “the ijth node pointing at uj”, we mean that encrypt(uj−1, uj)
is the ijth query of the form encrypt(x, uj) received by A′.
For any j ∈ [l], any d, dl, dl−1, · · · , dj+1, dj ∈ [n], and any i, il, il−1, · · · , ij+1, ij ∈ [n] such

that i ≤ d, il ≤ dl, · · · , ij ≤ dj , let Ψ
(d,dl,··· ,dj)

(i,il,··· ,ij)
denote the event that

(a) Gj−1 occurs; and

(b) V chal(A) has size d and ul is the ith node in it; and

(c) for each j ′ ∈ {j, j + 1, · · · , l}, Indegree(uj′) = dj′ and uj′−1 is the ij′th node pointing at
uj′ in G(A).

The events G0,G1, · · · ,Gl−1 can quite easily be expressed in terms of events of the above
type. For any j ∈ {0, · · · , l − 1}, Gj occurs if and only if the size of V

chal(A) equals d for some
d ∈ [n], and ul is the ith node in V chal(A) for some i ∈ [d] and has non-zero in-degree dl for
some dl in [n], and ul−1 is the ilth node pointing at ul in G(A) for some il ∈ [dl], and so on, all
the way upto uj . Put succinctly, for any j ∈ {0, · · · , l − 1}:

Gj =
n∨

d=1

d∨

i=1

n∨

dl=1

dl∨

il=1

· · ·
n∨

dj+1=1

dj+1∨

ij+1=1

Ψ
(d,dl,··· ,dj+1)

(i,il,··· ,ij+1)

Clearly, for any distinct pairs of vectors (d, dl, · · · , dj), (i, il, · · · , ij) and (d
′, d′l, · · · , d

′
j′), (i

′, i′l, · · · , i
′
j′),

the events Ψ
(d,dl,··· ,dj)

(i,il,··· ,ij)
and Ψ

(d′,d′
l
,··· ,d′

j′
)

(i′,i′
l
,··· ,i′

j′
)
are mutually exclusive, and so

∆j = P[OA;Gj ; b = 0]−P[OA;Gj ; b = 1]

=
∑

d∈[n],
i∈[d]

∑

dl∈[n],
il∈[dl]

· · ·
∑

dj+1∈[n],
ij+1∈[dj+1]




P[OA; Ψ

(d,dl,··· ,dj+1)

(i,il,··· ,ij+1)
; b = 0]

− P[OA; Ψ
(d,dl,··· ,dj+1)

(i,il,··· ,ij+1)
; b = 1]



 (6)

24

We will now show how to sum up this quantity with j ranging from 0 through l − 1 and to
express the sum (which is the same as ∆) in terms of ∆GSD(A). Towards this, we first define
another type of event, similar to (but slightly more involved than) the Ψ’s.
Let j be any arbitrary number in [l]. For any sequence of bits νj , νj+1, · · · , νl−1, let

−→ν j denote
the bitvector (νj , νj+1, · · · , νl−1). For any d, dl, · · · , dj ∈ [n] any i ∈ [d], il ∈ [dl], · · · , ij ∈ [dj]

and any bitvector −→ν j−1 ∈ {0, 1}
l−j+1, let Θ

(d,dl,··· ,dj)

(i,il,··· ,ij)
(−→ν j−1) denote the event that:

(a) For some j̃ ∈ {0, 1, · · · , j − 1}, the event Gj̃ occurs and Indegree(uj̃) = 0

(b) V chal(A) has size d and ul is the ith node in it;

(c) For each j ′ ∈ {j, j + 1, · · · , l}, Indegree(uj′) = dj′ , uj′−1 is the ij′th node pointing at uj′

in G(A) and the following holds:

◦ If νj′−1 = 0, A receives the real reply for encrypt(uj′−1, uj′), that is, Eku
j′−1
(kuj′).

◦ If νj′−1 = 1, A receives a fake reply for the same query, that is, Eku
j′−1
(ruj′).

(d) For each j ′ ∈ {j̃+1, · · · , j−1}, uj′−1 is the first node pointing at uj′ and A receives the real
reply for the query encrypt(uj′−1, uj′). (That is, it receives a ciphertext c← Eku

j′−1
(kuj′).)

The last condition is equivalent to saying that A receives the real reply for every query of
the form encrypt(x, uj′) where j

′ < j. (To see this, observe line 242 in A′’s code—A′’s reply to
each query of this form succeeding encrypt(uj′−1, uj′) is always real.) We use Θfirst and Θlast

to denote the following events:

Θfirst =
n∨

d=1

n∨

dl=1

Θ
(d,dl)
(1,1) ((0))

Θlast =
n∨

d=1

n∨

dl=1

Θ
(d,dl)
(d,dl)

((1))

In words, Θfirst (resp. Θlast) is the event that for some j̃ ∈ {0, · · · , l − 1}, Gj̃ occurs and

Indegree(uj̃) = 0, that ul is the first (resp. last) node in V chal(A), that ul−1 is the first (resp.
last) node pointing at ul in G(A), that the reply A receives for the query encrypt(ul−1, ul) is a
real ciphertext (resp. a fake one) and, finally, that the reply A receives for every query of the
form encrypt(x, uj) (j̃ < j < l) is a real ciphertext. The view of A under the occurrence of
either Θfirst or Θlast are, in fact, quite similar to the replies the challenger B provides to A in
the GSD game.

Claim A.3 |P[OA |Θfirst]−P[OA |Θlast]| = ∆GSD(A)

In the following claim, we relate the probabilities of the events Θfirst and Θlast to the quantity
α defined in equation 4.

Claim A.4 P[Θfirst] = P[Θlast] = α/2

The proof of these claims are postponed to Sections A.2.2 and A.2.3 respectively. We will
now illustrate how the two types of events we have defined hitherto—the Ψ’s and the Θ’s—are
related to each other. This will help us sum up the ∆j ’s (as defined in equation 6), express the
sum in terms of Θfirst and Θlast, and thus relate it to ∆GSD(A).

25

Before we explain the relation between the Ψ’s and the Θ’s, we need one last set of notations.
For any bitvector −→ν j and any bit value ν ∈ {0, 1}, let ν · −→ν j denote the bitvector formed by
prepending ν to −→ν j , and let XOR(ν,−→ν j) be defined as follows:

XOR(ν,−→ν j) = (ν ⊕ νj , νj ⊕ νj+1, νj+1 ⊕ νj+2, · · · , νl−3 ⊕ νl−2, νl−2 ⊕ νl−1)

(If j = l − 1, XOR(ν,−→ν j) equals (ν ⊕ νj).) Let Θ
(d,dl,··· ,dj ,0)

(i,il,··· ,ij ,0)
(1 · −→ν j−1) denote the event that

Θ
(d,dl,··· ,dj)

(i,il,··· ,ij)
(−→ν j−1) occurs and Indegree(uj−1) = 0.

For any two events E1 and E2, we use E1 = E2 to denote an assertion that E1 and E2 are
identical events (that is, E1 occurs if and only if E2 occurs) and E1 ' E2 to denote that the
view of A in its interaction with A′ given E1 occurs is identically distributed as its view given
E2 occurs. Let E1 ≡ E2 denote that E1 ' E2 and P[E1] = P[E2]. It is easy to check that if
E1 ≡ E2, then P[OA;E1] = P[OA;E2].

Lemma A.5 (Hybrid Cancellation Lemma)

1. For all d ∈ {2, · · · , n} and i ∈ {1, · · · , d− 1},

n∨

dl=1

Θ
(d,dl)
(i,dl)

((1)) ≡
n∨

dl=1

Θ
(d,dl)
(i+1,1)((0))

2. For all j ∈ {1, · · · , l}, for all d, dl, · · · , dj ∈ [n] and i, il, · · · , ij such that 1 ≤ i ≤ d, 1 ≤
il ≤ dl, · · · , 1 ≤ ij ≤ dj , and for any bitvector

−→ν j = (νj , · · · , νl−1) ∈ {0, 1}
l−j :

Θ
(d,dl,··· ,dj)

(i,il,··· ,ij)
(1 · −→ν j) ≡ Θ

(d,dl,··· ,dj+1,dj)

(i,il,··· ,ij+1,ij+1)
(0 · −→ν j)

3. For all j ∈ {1, · · · , l}, for all d, dl, · · · , dj ∈ [n] and i, il, · · · , ij such that 1 ≤ i ≤ d, 1 ≤
il ≤ dl, · · · , 1 ≤ ij ≤ dj , and for any bitvector

−→ν j−1 = (νj−1, · · · , νl−1) ∈ {0, 1}
l−j+1:

Θ
(d,dl,··· ,dj)

(i,il,··· ,ij)
(−→ν j−1) =

[

Θ
(d,dl,··· ,dj ,0)

(i,il,··· ,ij ,0)
(1 · −→ν j−1)

]

∨





n∨

dj−1=1

Θ
(d,dl,··· ,dj ,dj−1)

(i,il,··· ,ij ,1)
(0 · −→ν j−1)





4. Fix νl−1 = 0. Let ν be any arbitrary bit value and let (b = ν) denote the event that the
oracle OΠ

k,b (provided to A′) selects ν to be the value of b. Then, for all j ∈ {1, 2, · · · , l},
for all d, dl, · · · , dj ∈ [n] and i, il, · · · , ij such that 1 ≤ i ≤ d, 1 ≤ il ≤ dl, · · · , 1 ≤ ij ≤ dj ,
the following is true:

(a) If j = 1, then

Ψ
(d,dl,··· ,dj)

(i,il,··· ,ij)
∧ (b = ν) =

∨

νj−1,νj ,··· ,νl−2∈{0,1}

Θ
(d,dl,··· ,dj)

(i,il,··· ,ij)
(XOR(ν,−→ν j−1))

(b) If j > 1, then

Ψ
(d,dl,··· ,dj)

(i,il,··· ,ij)
∧ (b = ν) ≡

n∨

dj−1=0




∨

νj−1,νj ,··· ,νl−2∈{0,1}

Θ
(d,dl,··· ,dj ,dj−1)

(i,il,··· ,ij ,dj−1)
(1 · XOR(ν,−→ν j−1))





26

The proof of this lemma is given in Section A.2.4. The next lemma invokes the above lemma
and uses it to sum up the ∆j ’s, step by step, in an inductive manner. For any j ∈ {0, · · · , l−1},
let

∆j =

j
∑

j′=0

∆j′

Lemma A.6 (Telescoping Sums Lemma) For all j ∈ {0, 1, · · · , l − 1},

∆j =
∑

d∈[n],
i∈[d]

∑

dl∈[n],
il∈[dl]

· · ·
∑

dj+1∈[n],
ij+1∈[dj+1]







∑

νj ,··· ,νl−2∈{0,1},
νl−1=0






P[OA; Θ
(d,dl,··· ,dj+1)

(i,il,··· ,ij+1)
(XOR(0,−→ν j))]

− P[OA; Θ
(d,dl,··· ,dj+1)

(i,il,··· ,ij+1)
(XOR(1,−→ν j))]












The proof of this lemma is given in Section A.2.5. Given these two lemmas and Claims A.3
and A.4, the final result (Lemma A.2) is quite easy to prove. Using Lemma A.6, equation 5 can
be re-written as:

∆ = ∆l−1

=
∑

d∈[n],
i∈[d]

∑

dl∈[n],
il∈[dl]

∑

νl−1=0

(

P[OA; Θ
(d,dl)
(i,il)

(XOR(0,−→ν l−1))]−P[OA; Θ
(d,dl)
(i,il)

(XOR(1,−→ν l−1))]
)

=
∑

d∈[n],
i∈[d]

∑

dl∈[n],
il∈[dl]

(

P[OA; Θ
(d,dl)
(i,il)

((0))]−P[OA; Θ
(d,dl)
(i,il)

((1))]
)

=
∑

d∈[n],
i∈[d]

∑

dl∈[n]

(

P[OA; Θ
(d,dl)
(i,1) ((0))]−P[OA; Θ

(d,dl)
(i,dl)

((1))]
)

(Follows from the hybrid cancellation lemma, Lemma A.5, part 2)

=
n∑

d=1

n∑

dl=1

[d∑

i=1

(

P[OA; Θ
(d,dl)
(i,1) ((0))]−P[OA; Θ

(d,dl)
(i,dl)

((1))]
)]

=
n∑

d=1

d∑

dl=1

(

P[OA; Θ
(d,dl)
(1,1) ((0))]−P[OA; Θ

(d,dl)
(d,dl)

((1))]
)

(Follows from the hybrid cancellation lemma, part 1)

= P[OA; Θfirst]−P[OA; Θlast] = P[OA |Θfirst] ·P[Θfirst]−P[OA |Θlast] ·P[Θlast]

Now invoking Claims A.3 and A.4, we get

|∆| = |P[OA |Θfirst] ·P[Θfirst]−P[OA |Θlast] ·P[Θlast]|

=
α

2
· |P[OA |Θfirst]−P[OA |Θlast]|

=
α

2
·∆GSD(A)

>
αε′

2
(Follows from our initial assumption, inequality 1)

In the remainder of the appendix, we will give the proofs of all the lemmas and claims used
to prove Lemma A.2.

27

A.2.2 Proof of Claim A.3

We will argue that A’s view in its interaction with A′ given the occurrence of Θfirst (resp. Θlast)
is distributed identically as its view in the GSD game when the challenge bit b (chosen by B) is
0 (resp. 1). From this, the claim will follow immediately.
When Θfirst occurs, every query of A of the form encrypt(x, y) is replied to with a real

ciphertext (Ekx(ky)) and that of the form challenge(x) is replied to with kx—exactly the manner
in which replies are created when b = 0 in the GSD game. Why is this? To see why the former
is true, note that under the occurence of Θfirst, the only queries that could be replied to with
fake ciphertexts are those of the form encrypt(x, ul) and either the same as or preceding the
query encrypt(ul−1, ul). But, given Θfirst occurs, ul−1 is the first node pointing at ul and
the reply to encrypt(ul−1, ul) is real, thus implying that the replies for all encrypt queries of
A are real. To see why the latter is true, note that the reply to every query challenge(x),
including or succeeding challenge(ul) is always kx (line 400 of A′’s code), and when Θfirst

occurs, challenge(ul) is the first challenge query.
When Θlast happens, things are a bit less straightforward. As above, the only queries whose

replies could be faked by A′ are those of the form encrypt(x, ul), either including or preceding
encrypt(ul−1, ul). However, under the occurrence of Θlast, encrypt(ul−1, ul) is the last query of
this form, and even the reply for encrypt(ul−1, ul) is fake, thus implying that every query of the
form encrypt(x, ul) is replied to in a fake manner (specifically, with Ekx(rul)). Note also that
given Θlast, challenge(ul) is the last challenge query, and thus, the reply to all challenge(x)
queries except challenge(ul) is a random key, sampled independently of kx. For challenge(ul),
the reply is kul . Now comes the crucial part: Replying to the query challenge(ul) with kul
and to every query of the form encrypt(x, ul) with Ekx(rul)—where rul is independent of (but
identically distributed as) kul—produces the same distribution on the replies as replying to
challenge(ul) with rul and to every query of the form encrypt(x, ul) with Ekx(kul). Plus,
we know that neither kul nor rul can be used in creating any other replies for A (other than
those of the form encrypt(x, ul) or challenge(ul)). In effect, the replies that A′ provides to
A conditioned on event Θlast, are distributed exactly as B’s replies when b = 1 in the GSD
game—real ciphertexts for all encrypt queries and a random key (independent of kx) for every
query of the form challenge(x).

A.2.3 Proof of Claim A.4

We will prove that P[Θfirst] = α/2; the proof for the other part of the claim (namely, P[Θlast] =
α/2) is quite similar and is omitted.
Some notations first. Recall that in any execution of A, the graph G(A) and the set V chal(A)

are random variables dependent on the coins used by A and those used in the procedure for
replying to A’s queries. We define here some more random variables related to G(A) and V chal(A)
and the manner in which these are created in any execution.

• Let fchal be the random variable corresponding to the first node in V chal(A).

• For any fixed w ∈ [n], let fnode(w) be the random variable corresponding to the first node
pointing at w in G(A).

• For any fixed w ∈ [n], let fpath(w) be the random variable corresponding to the path in
G(A) that ends in w, that starts in a source (of G(A)) and is such that for every edge
x → y in the path, x = fnode(y). Let flen(w) be the length of fpath(w) (that is, the
number of edges in it).

28

Since G(A) is always acyclic, fpath(w) and flen(w) are well-defined (and uniquely so) for every
value of w ∈ [n] and every value assigned to G(A).
Let us now consider the event Θfirst and re-phrase it in terms of the above definitions. Θfirst

occurs if and only if in A’s interaction with A′, the variablesG(A), V chal(A), u0, · · · , ul, s, bs, · · · , bl−2
and the bit b (chosen by OΠ

k,b) are such that:

1. fchal = ul;

2. fnode(ul) = ul−1;

3. s = l − flen(ul) = l − flen(ul−1)− 1 and fpath(ul−1) = (us, us+1, · · · , ul−1)
14

4. For all j ∈ {0, 1, · · · , s− 1}, uj = 0.

5. b = 0 and bs = bs+1 = · · · = bl−2 = 0.
15

The last condition ensures that the replies that A′ provides to A for all queries of the form
encrypt(uj , uj+1) (j ≥ s) are real ciphertexts. (How so? For this, first observe that the reply
for any query encrypt(uj , uj+1), for j > s, is real if and only if bj = bj−1 and that for the query
encrypt(us, us+1) is real if and only if b = bs. Then notice that bl−1 = 0 always, which means
that for Θfirst to occur, all the other bj ’s and the bit b must also be zero.)
The probability that Θfirst occurs is thus:

P[Θfirst] =
l−1∑

l′=0

P

[
fchal = ul; fnode(ul) = ul−1; flen(ul−1) = l′; fpath(ul−1) = (ul−l′−1, · · · , ul−1);

u0 = · · · = ul−l′−2 = 0; b = 0; bl−l′−1 = · · · = bl−2 = 0

]

=

l−1∑

l′=0

∑

wl,··· ,wl−l′−1∈[n]

P







fchal = wl; fnode(wl) = wl−1; flen(wl−1) = l′;
fpath(wl−1) = (wl−l′−1, · · · , wl−2, wl−1);

ul = wl; · · · ; ul−l′−1 = wl−l′−1; ul−l′−2 = · · · = u0 = 0;
b = 0; bl−l′−1 = · · · = bl−2 = 0







Let −→w denote the sequence (wl−l′−1, wl−l′ , · · · , wl−1). For any l′ ∈ {0, · · · , l − 1} and −→w ∈

[n]l
′+2, let E

(l′,−→w)
1 and E

(l′,−→w)
2 be events defined as follows:

E
(l′,−→w)
1 =

(

fchal = wl ∧ fnode(wl) = wl−1 ∧ flen(wl−1) = l′ ∧ fpath(wl−1) = (wl−l′−1, · · · , wl−1)

)

E
(l′,−→w)
2 =

(

ul = wl ∧ · · · ∧ ul−l′−1 = wl−l′−1 ∧ ul−l′−2 = · · · = u0 = 0 ∧ b = 0 ∧ bl−l′−1 = · · · = bl−2 = 0

)

P[Θfirst] can now be written succinctly as follows:

P[Θfirst] =
l−1∑

l′=0

∑

−→w∈[n]l
′+2

P[E
(l′,−→w)
1 ; E

(l′,−→w)
2]

=

l−1∑

l′=0

∑

−→w∈[n]l
′+2

P[E
(l′,−→w)
1 | E

(l′,−→w)
2] ·P[E

(l′,−→w)
2]

14Throughout the proof of Claim A.4 and Lemma A.5, we denote paths in G(A) as sequences of nodes, but
without any zeroes prepended to the first node.
15 While expressing Θlast in terms of fchal , fnode(·), fpath(·) etc., the first two conditions and the last condition

must be suitably modified (ul must be the last node in V chal(A), ul−1 must be the last node pointing at ul and
b, bs, · · · , bl−2 must all equal 1) while the other conditions remain the same as above.

29

Let us first computeP[E
(l′,−→w)
2] for any arbitrary l′ and−→w . Notice that the values u0, · · · , ul, bs, · · · bl−2

are all generated by A′ independently of each other and of the bit b chosen by A′’s oracle OΠ
k,b.

Using this fact, computing P[E
(l′,−→w)
2] is quite straightforward:

P[E
(l′,−→w)
2] = P

[
ul = wl; ul−1 = wl−1; · · · ; ul−l′−1 = wl−l′−1; ul−l′−2 = · · · = u0 = 0;

b = 0; bl−l′−1 = · · · = bl−2 = 0

]

= P[ul = wl] ·P[ul−1 = wl−1] ·P[ul−2 = wl−2] · · ·P[ul−l′−1 = wl−l′−1]

× P[ul−l′−2 = 0] ·P[ul−l′−3 = 0] · · ·P[u0 = 0]

× P[b = 0] ·P[bl−l′−1 = 0] · · ·P[bl−2 = 0]

=

{

1

n
·
1

n
·

(
2

2n+ 1

)l′
}

×

{(
1

2n+ 1

)l−l′−1
}

×

{

1

2
·

(
1

2

)l′
}

(To understand this step, observe the probability distribution associated

with the uj ’s in line 001 of figure 2)

=
1

2n2
·

(
1

2n+ 1

)l′

·

(
1

2n+ 1

)l−l′−1

=
1

2n2(2n+ 1)l−1
=

α

2

Plugging this into the expression for P[Θfirst], we get:

P[Θfirst] =
α

2
·
l−1∑

l′=0

∑

−→w∈[n]l
′+2

P[E
(l′,−→w)
1 | E

(l′,−→w)
2]

We will now focus on the quantity P[E
(l′,−→w)
1 |E

(l′,−→w)
2]. Let us denote this quantity by p. Our

goal will be to show that the sum

Sp :=

l−1∑

l′=0

∑

−→w∈[n]l
′+2

p

is equal to one. From this, the claim will follow immediately.

Proving Sp = 1: Fix l′ and −→w . A transcript of A’s execution is called a good transcript if the

event E
(l′,−→w)
1 occurs during that execution; it is called bad otherwise. (Note: “Goodness” is a

concept well-defined for any execution of A, not necessarily one involving interaction with A′.)
Given a transcript of A’s execution, it is easy to tell whether it is good or not—simply check if
the queries contained in it satisfy the following conditions: (i) fchal = wl; (ii) fnode(wl) = wl−1;
(iii) flen(wl−1) = l′; and (iv) fpath(wl−1) = (wl−l′−1, · · · , wl−1). This essentially boils down to
verifying that:

(a) challenge(wl) is the first challenge query made by A;

(b) for every j ∈ {l−l′, · · · , l−1}, encrypt(wj−1, wj) is the first query of the form encrypt(x,wj)
made by A; and

(c) no query of the form encrypt(x,wl−l′−1) is ever made by A.

A bad query in a transcript t is one that violates any of the above conditions; that is, a query
qi ∈ t is bad if

30

• qi = challenge(x) for some x 6= wl and the query challenge(wl) does not occur before
it in t; or

• qi = encrypt(x,wj) (for some j ∈ {l − l′, · · · , l − 1} and x 6= wj−1) and the query
encrypt(wj−1, wj) does not occur before it in t; or

• qi is of the form encrypt(x,wl−l′−1).
16

Clearly, every bad transcript contains at least one bad query. The longest good prefix of a
bad transcript t = (q1, r1, · · · , qf , rf) is the sequence (q1, r1, · · · , qi, ri) (i < f) such that the
queries q1, · · · , qi are all good but the query qi+1 is bad. (Note: The longest good prefix of a
bad transcript could possibly be empty—the very first query in the transcript could be bad.)
For any transcript t, the relevant transcript corresponding to t, rel(t), is defined as follows:

if t is good, rel(t) = t, else rel(t) is the longest good prefix of t. Note that relevant transcripts
contain only good queries. For any multiset of transcripts, T , let rel(T) denote the multiset of
relevant transcripts corresponding to T ; that is, rel(T) = {rel(t) | t ∈ T }. An execution of
A is called relevant if it yields a relevant transcript. (Here, when we say “execution”, we also
refer to partial executions of A, that is, executions upto a certain query, e.g. the first bad query,
made by A.)

Now let us consider A’s interaction with A′. Suppose that the event E
(l′,−→w)
2 is known to have

occurred, which means that s (computed in line 003 of A′) is equal to l − l′ − 1. Let T
A | E

(l′,−→w)
2

denote the multiset of all possible transcripts that can be generated given E
(l′,−→w)
2 ; thus, the

size of T
A | E

(l′,−→w)
2

, say t, is equal to the number of possible assignments to the random variables

k1, · · · , kus−1, kus+1, · · · , kn and rus , · · · , rul (generated by A′ in line 004), the key k (generated
by OΠ

k,b), the randomness, rE , used in performing all encryption operations, and, finally, the
random coins, rA, used by A. Some of the transcripts in T

A | E
(l′,−→w)
2

are good while others are

bad, and the quantity p we defined earlier on is the ratio of the number of good transcripts in
T

A | E
(l′,−→w)
2

to t.

Consider the multiset rel(T
A | E

(l′,−→w)
2

). There are two interesting features of this multiset:

(a) First, notice that, for each transcript in rel(T
A | E

(l′,−→w)
2

), none of the replies given to the

adversary involve the random variables rus , rus+1, · · · , rul at all. Why is this? Given

that E
(l′,−→w)
2 occurs, these variables could be used in replying to queries either of the form

encrypt(x,ws), or else of the form encrypt(x,wj) (j ∈ {s+ 1, · · · , l}) provided the latter
type of queries are made before encrypt(wj−1, wj). But any such query would be a bad
query, and, by definition, transcripts in rel(T

A | E
(l′,−→w)
2

) don’t contain such queries!

Thus, every relevant execution of A in its interaction with A′ given E
(l′,−→w)
2 is completely

determined by an assignment to k1, · · · , kus−1, kus := k, kus+1, · · · , kn, and to rE and rA.
Let T̂

A | E
(l′,−→w)
2

denote the multiset of transcripts containing one transcript for each such

execution. (Note: T̂
A | E

(l′,−→w)
2

contains the same transcripts as in rel(T
A | E

(l′,−→w)
2

) but is

smaller than it, because we ignore the rui ’s while enumerating these transcripts.)

(b) Now observe that in every transcript in T̂
A | E

(l′,−→w)
2

, the replies given for a query of the form

encrypt(x, y) is a real ciphertext (that is, Ekx(ky)) and that of the form challenge(x) is

16One could consider adding another requirement to the definition of bad queries, namely that qi 6= corrupt(wj)
for any j ∈ {l − l′ − 1, · · · l}; the proof remains essentially the same even without this extra condition.

31

a real key (that is, kx). This is exactly the manner in which replies to queries are created
in the GSD game, conditioned on the event that the challenge bit b equals 0! Thus, if we
were to consider only relevant executions of A, the view of A in the GSD game given b = 0

has the same distribution as its view in its interaction with A′ given E
(l′,−→w)
2 occurs.

It follows that the quantity p is equal to the probability that event E
(l′,−→w)
1 takes place when

b = 0 in the GSD game. Sp simply sums this probability over all possible values of l
′ and −→w

and must thus be equal to 1.

A.2.4 Proof of the Hybrid Cancellation Lemma (Lemma A.5)

Let us first set up some notation that will be useful throughout the lemma. We think of the
interaction between A′ and A as a game in which A makes multiple queries and A′ replies to
these queries in some prescribed manner based on the random variables u0, · · · , ul, bs, · · · , bl−2
(and other randomness involved in generating keys, and forming ciphertexts). We denote this
game by Game0. Throughout the proof of the lemma, we will be considering various modifi-
cations of this game and making statements of the sort: “the probability that event E occurs in
Game0 is the same as the probability that E occurs in some modified version of Game0”. To
formalize such statements, we adopt the following convention: For any event E, P[E] denotes
the probability that E occurs in Game0, while for any modification of Game0, say Game′, the
probability that E occurs in Game′ is denoted by PGame

′ [E].

Proof of Part 1. Fix d and i such that d ∈ {2, · · · , n} and i ∈ {1, · · · , d − 1}. Define events

E
(0)
d,i and E

(1)
d,i as follows:

E
(0)
d,i =

n∨

dl=1

Θ
(d,dl)
(i,dl)

((1)) and E
(1)
d,i =

n∨

dl=1

Θ
(d,dl)
(i+1,1)((0))

Now consider the following modified version of Game0, which we denote by Gamei. In this
modification, A′ first generates keys k1, · · · , kn (Note: All keys are generated) and, subsequently,
replies to all encrypt queries using real ciphertexts, just as in the GSD game. The responses
to all corrupt queries are also just as they are in the GSD game. For the challenge queries,
however, A′ does the following—it replies to the first i queries of the form challenge(x) with a
random element of {0, 1}η, sampled independently of kx, while to the other queries of this form,
its reply is kx.

We claim that the view of A in Game0 given E
(0)
d,i occurs or given E

(1)
d,i occurs is the same as

its view in Gamei given that V
chal(A) has size d. It is easy to see why this is true for the case

when E
(1)
d,i occurs (follows almost immediately from the definition of event Θ

(d,dl)
(i+1,dl)

((0))). The
other part is somewhat more non-trivial and we will prove it in greater detail.

Given that event E
(0)
d,i occurs, the replies that A′ provides to A (in Game0) are decided as

follows:

(a) for each query of the form challenge(x) that is issued before the ith challenge query—
which is the same as challenge(ul)—the reply is a random key from {0, 1}η, sampled
independently of kx, and for each query challenge(x) issued after the ith challenge

query, the reply is kx;

(b) for the ith challenge query, namely challenge(ul), the reply is kul .

32

(c) for each query of the form encrypt(x, ul), the reply is Ekx(rul). (This is because, given

E
(0)
d,i occurs, the reply for the last query of the form encrypt(x, ul)—which is the same as

encrypt(ul−1, ul)—is a fake ciphertext Ekul−1 (rul). This means that the reply for every

query of that form must be fake, too.)

(d) for every other encrypt (and corrupt) query, the reply is just as in the GSD game.

Notice that kul and rul are generated by A′ independently of each other and are not used in
replying to any query other than that of the form encrypt(x, ul) or challenge(ul). So, if we
modify conditions (b) and (c) as below

(b’) for the ith challenge query, namely challenge(ul), the reply is rul ; and

(c’) for each query of the form encrypt(x, ul), the reply is Ekx(kul).

the distribution of the replies given to A remains unmodified. Conditions (a), (b’), (c’) and (d)
can now succinctly be written as follows:

(a”) for each query challenge(x) that is issued before the (i+1)th challenge query the reply is
a random key from {0, 1}η, sampled independently of kx, and for each query challenge(x)
issued after the (i+ 1)th challenge query (and including it), the reply is kx;

(b”) for each encrypt and corrupt query, the reply is just as in the GSD game.

This is exactly the manner in which replies to A’s queries are decided in Gamei. As such, the

view of A given E
(0)
d,i occurs is the same as its view in Gamei given V chal(A) has size d.

We are left with proving that P[E
(0)
d,i] = P[E

(1)
d,i]. The proof for this statement uses techniques

similar to those used to prove Claim A.4; we will, thus, omit many details.

For any w ∈ [n], let fnode(w), fpath(w) and flen(w) be random variables as defined in Sec-
tion A.2.3. Let lnode(w) be the random variable corresponding to the last node pointing at w

in G(A). Let Φ(d) denote the event that the size of V chal(A) equals d and Φ
(d)
(i) (w) (w ∈ [n]) the

event that Φ(d) occurs and the ith node in it is w. As with fnode(w), fpath(w) and flen(w), the

events Φ(d),Φ
(d)
(i) (w) and the random variable lnode(w) are well-defined for any execution of A,

not necessarily one involving interaction with A′.

The probability that event E
(0)
d,i occurs can be written in terms of these random variables as

follows:

P[E
(0)
d,i] =

n∑

dl=1

P[Θ
(d,dl)
(i,dl)

((1))]

=
n∑

dl=1

l−1∑

l′=0

P






Φ
(d)
(i) (ul); Indegree(ul) = dl; lnode(ul) = ul−1; flen(ul−1) = l′;

fpath(ul−1) = (ul−l′−1, · · · , ul−1);
ul−l′−2 = · · · = u0 = 0; b = 1; bl−l′−1 = · · · = bl−2 = 1






To understand the last part of this step (that is, why we require b, bl−l′−1, · · · bl−2 all to be equal

to 1), observe that under the occurrence of E
(0)
d,i , (a) the reply to the query encrypt(ul−1, ul)

must be fake, which means that bl−1⊕ bl−2 = 1 and so bl−2 = 1; and (b) the reply to all queries
of the form encrypt(uj−1, uj) (j < l and j > l− 1−flen(ul−1)) must be real, which means that
bl−2 ⊕ bl−3 = 0, bl−3 ⊕ bl−4 = 0, · · · , bl−flen(ul−1) ⊕ bl−1−flen(ul−1) = 0, bl−1−flen(ul−1) ⊕ b = 0.

33

For any l′ ∈ {0, · · · , l − 1}, and any vector of values −→w = (wl−l′−1, · · · , wl) ∈ [n]
l′+2, let

E
(l′,−→w)
1 and E

(l′,−→w)
2 be events defined as follows:

E
(l′,−→w)
1 =

(
Φ
(d)
(i) (wl) ∧ Indegree(wl) = dl ∧ lnode(wl) = wl−1 ∧ flen(wl−1) = l′ ∧

fpath(wl−1) = (wl−l′−1, · · · , wl−1)

)

E
(l′,−→w)
2 =

(

ul = wl ∧ · · · ∧ ul−l′−1 = wl−l′−1 ∧ ul−l′−2 = · · · = u0 = 0 ∧ b = 1 ∧ bl−l′−1 = · · · = bl−2 = 1

)

P[E
(0)
d,i] can now be expressed in terms of these events as follows:

P[E
(0)
d,i] =

n∑

dl=1

l−1∑

l′=0

∑

−→w∈[n]l
′+2

P[E
(l′,−→w)
1 ; E

(l′,−→w)
2]

=
n∑

dl=1

l−1∑

l′=0

∑

−→w∈[n]l
′+2

P[E
(l′,−→w)
1 | E

(l′,−→w)
2] ·P[E

(l′,−→w)
2]

As in the proof of Claim A.4, we can show that P[E
(l′,−→w)
2] is equal to α/2 for every choice of l′

and −→w , and so

P[E
(0)
d,i] =

α

2
·

n∑

dl=1

l−1∑

l′=0

∑

−→w∈[n]l
′+2

P[E
(l′,−→w)
1 | E

(l′,−→w)
2]

We now claim that the conditional probability P[E
(l′,−→w)
1 |E

(l′,−→w)
2] is equal to the probability of

occurrence of E
(l′,−→w)
1 in Gamei. The proof of this claim uses the same ideas as used in the proof

of Claim A.4 (specifically, one needs to carefully establish a one-to-one correspondance between

transcripts—complete ones as well as partial ones—that do not violate E
(l′,−→w)
1 in Game0 and

those that do not violate it in Gamei); details of the proof of the claim are omitted. Using the

claim, we can re-write P[E
(0)
d,i] as

P[E
(0)
d,i] =

α

2
·

n∑

dl=1

l−1∑

l′=0

∑

−→w∈[n]l
′+2

PGamei
[E

(l′,−→w)
1]

=
α

2
·

n∑

dl=1

l−1∑

l′=0

∑

−→w∈[n]l
′+2

PGamei

[

Φ
(d)
(i) (wl); Indegree(wl) = dl; lnode(wl) = wl−1;

flen(wl−1) = l′; fpath(wl−1) = (wl−l′−1, · · · , wl−1)

]

=
α

2
·

n∑

wl=1

n∑

dl=1

PGamei
[Φ

(d)
(i) (wl); Indegree(wl) = dl] =

α

2
·PGamei

[Φ(d)]

Using essentially the same approach, we can also equate P[E
(1)
d,i] to (α/2)PGamei

[Φ(d)]. First,

define two events Ẽ
(l′,−→w)
1 and Ẽ

(l′,−→w)
2 as follows:

Ẽ
(l′,−→w)
1 =

(
Φ
(d)
(i+1)(wl) ∧ Indegree(wl) = dl ∧ fnode(wl) = wl−1 ∧ flen(wl−1) = l′ ∧

fpath(wl−1) = (wl−l′−1, · · · , wl−1)

)

34

Ẽ
(l′,−→w)
2 =

(

ul = wl ∧ · · · ∧ ul−l′−1 = wl−l′−1 ∧ ul−l′−2 = · · · = u0 = 0 ∧ b = 0 ∧ bl−l′−1 = · · · = bl−2 = 0

)

(Notice how Ẽ
(l′,−→w)
1 differs from E

(l′,−→w)
1 : We require wl to be the (i+ 1)th node in V chal(A) and

wl−1 to be the first node pointing at wl. Also notice that in Ẽ
(l′,−→w)
2 , we require the bi’s to be

equal to 0, not 1.) Now express P[E
(1)
d,i] in terms of these events:

P[E
(1)
d,i] =

n∑

dl=1

l−1∑

l′=0

∑

−→w∈[n]l
′+2

P[Ẽ
(l′,−→w)
1 ; Ẽ

(l′,−→w)
2]

=
n∑

dl=1

l−1∑

l′=0

∑

−→w∈[n]l
′+2

P[Ẽ
(l′,−→w)
1 | Ẽ

(l′,−→w)
2] ·P[Ẽ

(l′,−→w)
2]

=
α

2
·

n∑

dl=1

l−1∑

l′=0

∑

−→w∈[n]l
′+2

P[Ẽ
(l′,−→w)
1 | Ẽ

(l′,−→w)
2]

Again, P[Ẽ
(l′,−→w)
1 | Ẽ

(l′,−→w)
2] can be shown to be equal to PGamei

[Ẽ
(l′,−→w)
1], using which the desired

expression for P[E
(1)
d,i] is easily obtained:

P[E
(1)
d,i] =

α

2
·

n∑

dl=1

l−1∑

l′=0

∑

−→w∈[n]l
′+2

PGamei
[Ẽ

(l′,−→w)
1]

=
α

2
·

n∑

dl=1

l−1∑

l′=0

∑

−→w∈[n]l
′+2

PGSD(i)

[

Φ
(d)
(i+1)(wl); Indegree(wl) = dl; fnode(wl) = wl−1;

flen(wl−1) = l′; fpath(wl−1) = (wl−l′−1, · · · , wl−1)

]

=
α

2
·

n∑

wl=1

n∑

dl=1

PGamei
[Φ

(d)
(i+1)(wl); Indegree(wl) = dl] =

α

2
·PGamei

[Φ(d)]

Proof of Part 2. Fix j, d, dl, · · · , dj and i, il, · · · , ij such that i ∈ [d], il ∈ [dl], · · · , ij ∈ [dj] and
fix a bitvector −→ν j ∈ {0, 1}

l−j . Consider the following modified version of Game0, which we call
Gamej,ij . In the setup phase, A

′ first generates the values uj , uj+1, · · · , ul and bj , · · · , bl−2, bl−1
and it does so exactly as in the original version: ul and ul−1 are sampled uniformly at random
from [n]; for each j ′ ∈ {j, · · · , l − 2}, P[uj′ = 0] = 1/(2n + 1) and P[uj′ = x] (for any x ∈ [n])
equals 2/(2n+1); bl−1 = 0; and, bj , · · · , bl−2 are all sampled uniformly at random from {0, 1}. A′

then sets bj−1 = νj⊕νj+1⊕· · ·⊕νl−1. Finally, A
′ generates keys k1, · · · , kn (Note again: All keys

are generated!) and also some other random values ruj , · · · , rul (each sampled independently
and uniformly at random from {0, 1}η).
In the execution phase, the replies to A’s queries are decided as follows: For any corrupt

query, corrupt(x), the reply is simply kx; for every query of the form challenge(x) made before
challenge(ul), the reply is a random bitstring, generated independently of kx, and for every
such query made after challenge(ul) (and including it as well), the reply is kx. For every query
of the form encrypt(uj′ , uj′+1) such that j

′ ∈ {j, · · · , l−1}, the reply is real, that is Eku
j′
(kuj′+1),

if and only if bj′ = bj′−1 (and is fake, that is Eku
j′
(ruj′+1) otherwise); for every query of the form

encrypt(x, uj′) made before (resp. after) encrypt(uj′−1, uj′), the reply is fake (resp. real). For
all other encrypt queries, except those of the form encrypt(x, ul), the reply is always real. For

35

queries of the form encrypt(x, uj), the matter is a bit tricky: the first ij queries of this form (ij
as fixed earlier on) are replied to with fake ciphertexts (Ekx(ruj)) while the rest with real ones
(Ekx(kuj)).
For any w ∈ [n], and any execution of A either in Game0 or in Gamej,ij , we define the

following event, denoted Φ
(d,dl,··· ,dj)

(i,il,··· ,ij)
(−→ν j , w). This event occurs if and only if

• V chal(A) has size d and ul is the ith node in it; and

• For all j′ ∈ {j + 1, · · · , l}, Indegree(uj′) = dj′ , uj′−1 is the ij′th node pointing at uj′ in
G(A) and the reply given for query encrypt(uj′−1, uj′) is real if and only if νj′−1 = 0; and

• Indegree(uj) = dj and w is the ijth node pointing at uj in G(A).

Let Φ
(d,dl,··· ,dj+1,dj)

(i,il,··· ,ij+1)
(−→ν j) denote the event that Φ

(d,dl,··· ,dj)

(i,il,··· ,ij)
(−→ν j , w) occurs for some w ∈ [n];

that is Φ
(d,dl,··· ,dj+1,dj)

(i,il,··· ,ij+1)
(−→ν j) =

∨

w∈[n]Φ
(d,dl,··· ,dj)

(i,il,··· ,ij)
(−→ν j , w). Let E

(0)
j,d,i(
−→ν j) and E

(1)
j,d,i(
−→ν j) be de-

fined as follows:

E
(0)
j,d,i(
−→ν j) = Θ

(d,dl,··· ,dj)

(i,il,··· ,ij)
(1 ·−→ν j) and E

(1)
j,d,i(
−→ν j) = Θ

(d,dl,··· ,dj+1,dj)

(i,il,··· ,ij+1,ij+1)
(0 ·−→ν j)

Our task is to show that E
(0)
j,d,i(
−→ν j) ≡ E

(1)
j,d,i(
−→ν j), that is, (a) E

(0)
j,d,i(
−→ν j) ' E

(1)
j,d,i(
−→ν j) and (b)

P[E
(0)
j,d,i(
−→ν j)] = P[E

(1)
j,d,i(
−→ν j)]. Proving part (a) is relatively simple—one only needs to argue

that the view of A in Game0 given E
(0)
j,d,i(
−→ν j) occurs or given E

(1)
j,d,i(
−→ν j) occurs is the same as

its view in Gamej,ij given that the event Φ
(d,dl,··· ,dj+1,dj)

(i,il,··· ,ij+1)
(−→ν j) occurs in that game. This follows

almost immediately from the definitions of E
(0)
j,d,i(
−→ν j), E

(1)
j,d,i(
−→ν j) and of Φ

(d,dl,··· ,dj+1,dj)

(i,il,··· ,ij+1)
(−→ν j).

(The details of the proof are omitted.) Proving P[E
(0)
j,d,i(
−→ν j)] = P[E

(1)
j,d,i(
−→ν j)] is the hard part

and we will sketch the proof for this here. The proof, as in the proof of part 1, involves expressing
each of these probabilities as a sum of various conditional probabilities; in the current proof,
though, each such conditional probability expression P[E1 |E2] will be equated to an expression
of the form PGamej,ij

[E1], and this will then be used to perform the summation.

First, focus on P[E
(0)
j,d,i(
−→ν j)]. Notice that when E

(0)
j,d,i(
−→ν j) occurs in Game0, uj−1 must

be the ijth node pointing at uj and the reply to the query encrypt(uj−1, uj) must be fake.
Since the replies to all queries of the form encrypt(uj′−1, uj′) for j

′ > j are ascertained by the
vector −→ν j and since, for s < j ′ < j, every such query must be replied to with a real ciphertext,
there is exactly one assignment to the variables bj−1, bj−2, · · · , bs, b (where b is selected by A′’s

left-or-right oracle) for which E
(0)
j,d,i(
−→ν j) can occur. A careful analysis of the code of A′ reveals

that this assigment is as follows:

bj−1 = νj ⊕ νj+1 ⊕ · · · ⊕ νl−1

b = bs = · · · = bj−3 = bj−2 = 1⊕ νj ⊕ νj+1 ⊕ · · · ⊕ νl−1

Using this observation, we can write P[E
(0)
j,d,i(
−→ν j)] as follows:

P[E
(0)
j,d,i(
−→ν j)] =

j−1
∑

l′=0

P






Φ
(d,dl,··· ,dj)

(i,il,··· ,ij)
(−→ν j , uj−1); flen(uj−1) = l′; fpath(uj−1) = (uj−l′−1, · · · , uj−1);

uj−l′−2 = · · · = u0 = 0; bj−1 = νj ⊕ νj+1 ⊕ · · · ⊕ νl−1;
b = bj−l′−1 = · · · = bj−2 = 1⊕ νj ⊕ νj+1 ⊕ · · · ⊕ νl−1






36

Now, for any l′ ∈ {0, · · · , j − 1} and any vector −→w = (wj−l′−1, · · · , wj−1) ∈ [n]
l′+1, let us define

the following events:

E
(l′,−→w)
j,1 =

(

Φ
(d,dl,··· ,dj)

(i,il,··· ,ij)
(−→ν j , wj−1) ∧ flen(wj−1) = l′ ∧ fpath(wj−1) = (wj−l′−1, · · · , wj−1)

)

E
(l′,−→w)
j,2 =





uj−1 = wj−1 ∧ uj−2 = wj−2 ∧ · · · ∧ uj−l′−1 = wj−l′−1 ∧
uj−l′−2 = · · · = u0 = 0 ∧ bj−1 = νj ⊕ νj+1 ⊕ · · · ⊕ νl−1 ∧

b = bj−l′−1 = · · · = bj−2 = 1⊕ νj ⊕ νj+1 ⊕ · · · ⊕ νl−1





P[E
(0)
j,d,i(
−→ν j)] can now be written succinctly as:

P[E
(0)
j,d,i(
−→ν j)] =

j−1
∑

l′=0

∑

−→w∈[n]l
′+1

P[E
(l′,−→w)
j,1 ; E

(l′,−→w)
j,2]

=

j−1
∑

l′=0

∑

−→w∈[n]l
′+1

P[E
(l′,−→w)
j,1 | E

(l′,−→w)
j,2] ·P[E

(l′,−→w)
j,2]

Let α′ = P[E
(l′,−→w)
j,2]. It can be checked easily that for any l′ ∈ {0, · · · , j−1} and any −→w ∈ [n]l

′+1,

α′ =

{
1

2(2n+1)j
if j < l

1
2n(2n+1)l−1

if j = l

Thus,

P[E
(0)
j,d,i(
−→ν j)] = α′ ·

j−1
∑

l′=0

∑

−→w∈[n]l
′+1

P[E
(l′,−→w)
j,1 | E

(l′,−→w)
j,2]

We claim that the probability P[E
(l′,−→w)
j,1 | E

(l′,−→w)
j,2] is equal to the probability that E

(l′,−→w)
j,1 occurs

in Gamej,ij , that is, P[E
(l′,−→w)
j,1 | E

(l′,−→w)
j,2] = PGamej,ij

[E
(l′,−→w)
j,1]. The intuition behind this is the

following—given that E
(l′,−→w)
j,2 occurs in Game0, none of the random values rj−l′−1, · · · , rj−1 are

used in any execution of A unless and until one or more conditions under E
(l′,−→w)
j,1 are violated.

Thus, if we consider transcripts of this interaction—given E
(l′,−→w)
j,2 occurs—only upto the point

where a violation of E
(l′,−→w)
j,1 is found (that is, truncate the “bad” transcripts at the point where

they start violating E
(l′,−→w)
j,1), the transcripts would look exactly like one in the interaction of A

with A′ in Gamej,ij . In effect, there is a one-to-one correspondance between “non-violating”

transcripts in these two interactions. The probability P[E
(l′,−→w)
j,1 |E

(l′,−→w)
j,2] is the ratio of the good

(that is, not truncated) transcripts to the total number of transcripts in Game0, which, in the

setting of Gamej,ij , is the same as PGamej,ij
[E

(l′,−→w)
j,1]. The details of the proof are similar to

those in the proof of Claim A.4 and are omitted.

37

Using the above claim, we can write:

P[E
(0)
j,d,i(
−→ν j)] = α′ ·

j−1
∑

l′=0

∑

−→w∈[n]l
′+1

PGamej,ij
[E

(l′,−→w)
j,1]

= α′ ·

j−1
∑

l′=0

∑

−→w∈[n]l
′+1

PGamej,ij

[

Φ
(d,dl,··· ,dj)

(i,il,··· ,ij)
(−→ν j , wj−1); flen(wj−1) = l′;

fpath(wj−1) = (wj−l′−1, · · · , wj−1)

]

= α′ ·
∑

wj−1∈[n]

j−1
∑

l′=0

PGamej,ij
[Φ

(d,dl,··· ,dj)

(i,il,··· ,ij)
(−→ν j , wj−1); flen(wj−1) = l′]

= α′ ·PGamej,ij
[Φ

(d,dl,··· ,dj+1,dj)

(i,il,··· ,ij+1)
(−→ν j)]

And now using essentially the same approach one can also equate P[E
(1)
j,d,i(
−→ν j)] to

α′ · PGamej,ij
[Φ

(d,dl,··· ,dj+1,dj)

(i,il,··· ,ij+1)
(−→ν j)]. We briefly sketch here how this is done, highlighting only

the parts where the proof differs from that for the case of E
(0)
j,d,i(
−→ν j).

When E
(1)
j,d,i(
−→ν j) = Θ

(d,dl,··· ,dj+1,dj)

(i,il,··· ,ij+1,ij+1)
(0 · −→ν j) occurs in Game0, uj−1 is the (ij + 1)th node

pointing at uj and the reply to the query encrypt(uj−1, uj) is real. The replies to all queries
encrypt(uj′−1, uj′) for j

′ > j are ascertained by the vector −→ν j , and for s < j′ < j, every such
query is replied to with a real ciphertext. This implies that there is exactly one assignment to

the variables bj−1, bj−2, · · · , bs, b for which E
(1)
j,d,i(
−→ν j) can occur, which is as follows:

b = bs = · · · = bj−3 = bj−2 = bj−1 = νj ⊕ νj+1 ⊕ · · · ⊕ νl−1

Now, for any l′ ∈ {0, · · · , j − 1} and any vector −→w = (wj−l′−1, · · · , wj−1) ∈ [n]
l′+1, let us define

the following events:

Ẽ
(l′,−→w)
j,1 =

(

Φ
(d,dl,··· ,dj+1,dj)

(i,il,··· ,ij+1,ij+1)
(−→ν j , wj−1) ∧ flen(wj−1) = l′ ∧ fpath(wj−1) = (wj−l′−1, · · · , wj−1)

)

Ẽ
(l′,−→w)
j,2 =

(
uj−1 = wj−1 ∧ uj−2 = wj−2 ∧ · · · ∧ uj−l′−1 = wj−l′−1 ∧

uj−l′−2 = · · · = u0 = 0 ∧ b = bj−l′−1 = · · · = bj−2 = bj−1 = νj ⊕ νj+1 ⊕ · · · ⊕ νl−1

)

Notice how Ẽ
(l′,−→w)
j,1 differs from E

(l′,−→w)
j,1 : we require wj−1 to be the (ij + 1)th node (and not the

ijth one) pointing at uj . P[E
(1)
j,d,i(
−→ν j)] can be written in terms of these events as:

P[E
(1)
j,d,i(
−→ν j)] =

j−1
∑

l′=0

∑

−→w∈[n]l
′+1

P[Ẽ
(l′,−→w)
j,1 ; Ẽ

(l′,−→w)
j,2]

=

j−1
∑

l′=0

∑

−→w∈[n]l
′+1

P[Ẽ
(l′,−→w)
j,1 | Ẽ

(l′,−→w)
j,2] ·P[Ẽ

(l′,−→w)
j,2]

38

which can (using the same techniques as used in the case of E
(0)
j,d,i(
−→ν j)) be shown to be equal to

= α′ ·

j−1
∑

l′=0

∑

−→w∈[n]l
′+1

PGamej,ij
[Ẽ

(l′,−→w)
j,1]

= α′ ·

j−1
∑

l′=0

∑

−→w∈[n]l
′+1

PGamej,ij

[

Φ
(d,dl,··· ,dj+1,dj)

(i,il,··· ,ij+1,ij+1)
(−→ν j , wj−1); flen(wj−1) = l′;

fpath(wj−1) = (wj−l′−1, · · · , wj−1)

]

= α′ ·
∑

wj−1∈[n]

j−1
∑

l′=0

PGamej,ij
[Φ

(d,dl,··· ,dj+1,dj)

(i,il,··· ,ij+1,ij+1)
(−→ν j , wj−1); flen(wj−1) = l′]

= α′ ·PGamej,ij
[Φ

(d,dl,··· ,dj+1,dj)

(i,il,··· ,ij+1)
(−→ν j)]

Proof of Part 3. The proof of this part follows from the very definition of Θ
(d,dl,··· ,dj)

(i,il,··· ,ij)
(−→ν j−1).

When Θ
(d,dl,··· ,dj)

(i,il,··· ,ij)
(−→ν j−1) occurs, the in-degree of uj−1 in G(A) must either be zero or in the range

of 1 through n. If the in-degree is zero, this is the same as the occurrence of Θ
(d,dl,··· ,dj ,0)

(i,il,··· ,ij ,0)
(1·−→ν j−1).

If the in-degree is non-zero (say, it is equal to dj−1), then uj−2 must be the first node pointing

at uj−1 in G(A) and the event Θ
(d,dl,··· ,dj ,dj−1)

(i,il,··· ,ij ,1)
(0 · −→ν j−1) must occur. This gives us the desired

expression for Θ
(d,dl,··· ,dj)

(i,il,··· ,ij)
(−→ν j−1).

Proof of Part 4. The proof of part (a) is relatively straightforward and follows immediately

from the definition of Ψ
(d,dl,··· ,dj)

(i,il,··· ,ij)
and by inspection of the code of A′. Notice that when

Ψ
(d,dl,··· ,d1)
(i,il,··· ,i1)

occurs, the event G0 must occur (that is, u0, u1, · · · , ul must all be non-zero and

must form a valid path in G(A)), and since the depth of G(A) is at most l, Indegree(u0) must
equal 0. Also, for each j ′ ∈ {0, · · · , l−2}, bj′ must equal νj′ for “some” νj′ ∈ {0, 1} and for each
such assignment to the bj′ ’s, the reply given for the query encrypt(uj′−1, uj′), when j′ > 1, is
real if and only if νj′−1 ⊕ νj′−2 = 0; when j′ = 1, the reply is real if and only if ν0 ⊕ b = 0.

Thus, the occurrence of Ψ
(d,dl,··· ,d1)
(i,il,··· ,i1)

is equivalent to the occurrence of Θ
(d,dl,··· ,d1)
(i,il,··· ,i1)

(XOR(b,−→ν 0))

for “some” choice of ν0, ν1, · · · , νl−2 ∈ {0, 1}. From this, the desired result follows.
The proof of part 4(b) is similar to the proof of part 2 we already did. As in that proof, we

first define a new game played between A′ and A which is the same as Gamej,ij but with two
differences: (i) In the setup phase, A′ selects bj−1 to be equal to ν (as opposed to νj⊕· · ·⊕νl−1 as
inGamej,ij); and (ii) In the execution phase, A

′ replies to all queries of the form encrypt(x, uj)
with fake ciphertexts (as opposed to just the first ij queries as in Gamej,ij). We denote this
modified game by Gamej,all and for any event E, we denote the probability that E occurs

during Gamej,all by PGamej,all
[E]. Note that the event Φ

(d,dl,··· ,dj+1,dj)

(i,il,··· ,ij+1)
(−→ν j) is well-defined for

the game Gamej,all.

Let E
(0)
j,d,i,ν = Ψ

(d,dl,··· ,dj)

(i,il,··· ,ij)
∧ (b = ν) ; and

E
(1)
j,d,i,ν =

n∨

dj−1=1




∨

νj−1,··· ,νl−2∈{0,1}

Θ
(d,dl,··· ,dj ,dj−1)

(i,il,··· ,ij ,dj−1)
(1 · XOR(ν,−→ν j−1))





39

Let Φ
(dj−1)
−→ν j−1

:= Φ
(d,dl,··· ,dj ,dj−1)

(i,il,··· ,ij)
(XOR(ν,−→ν j−1)). It is easy to check that the view of A in

Game0 given Ψ
(d,dl,··· ,dj)

(i,il,··· ,ij)
∧ (b = ν) occurs is the same as its view in Gamej−1,all given Φ

(dj−1)
−→ν j−1

occurs for some dj−1 ∈ [n] ∪ {0} and some
−→ν j−1 ∈ {0, 1}

l−j (such that νl−1 = 0). (This is also

the same as A’s view in Game0 given Φ
(dj−1)
−→ν j−1

occurs for some dj−1 and
−→ν j−1.) At the same

time, given that Θ
(d,dl,··· ,dj ,dj−1)

(i,il,··· ,ij ,dj−1)
(1 ·XOR(ν,−→ν j−1)) occurs in Game0, the view of A is identically

distributed as its view in Gamej−1,all given Φ
(dj−1)
−→ν j−1

occurs. In other words, A’s view in Game0

given E
(1)
j,d,i,ν is the same as its view in Gamej−1,all given Φ

(dj−1)
−→ν j−1

occurs for some dj−1 and

−→ν j−1 ∈ {0, 1}
l−j (νl−1 = 0). From this, it follows that E

(0)
j,d,i,ν ' E

(1)
j,d,i,ν .

We are left with proving P[E
(0)
j,d,i,ν] = P[E

(1)
j,d,i,ν]. Fix νl−1 = 0. For any νj−1, · · · , νl−2, let∑

νj−1,...,l−2
denote the summation

∑

(νj−1,··· ,νl−2)∈{0,1}l−j
.

First, focus on P[E
(0)
j,d,i,ν]. This probability can be written in terms of the event Φ

(dj−1)
−→ν j−1

, as

follows:

P[E
(0)
j,d,i,ν] =

n∑

dj−1=0

∑

νj−1,...,l−2

P
[

Φ
(dj−1)
−→ν j−1

; u0 = u1 = · · · = uj−2 = 0; b = ν
]

=
1

2

(
1

2n+ 1

)j−1 n∑

dj−1=0

∑

νj−1,...,l−2

P
[

Φ
(dj−1)
−→ν j−1

| u0 = u1 = · · · = uj−2 = 0; b = ν
]

The probability that event Φ
(dj−1)
−→ν j−1

= Φ
(d,dl,··· ,dj ,dj−1)

(i,il,··· ,ij)
(XOR(ν,−→ν j−1)) occurs in Game0 given

u0, · · · , uj−2 are all zero and b = ν is simply equal to the probability that Φ
(dj−1)
−→ν j−1

occurs in

Gamej−1,all. So,

P[E
(0)
j,d,i,ν] =

1

2

(
1

2n+ 1

)j−1 n∑

dj−1=0

∑

νj−1,...,l−2

PGamej−1,all

[

Φ
(dj−1)
−→ν j−1

]

The probability of occurrence of event E
(1)
j,d,i,ν (in Game0) can also be shown to be equal to the

above quantity. First, let us split this event based on the in-degree of node uj−1 in G(A) being
zero or non-zero.

P[E
(1)
j,d,i,ν] =

n∑

dj−1=0

∑

νj−1,...,l−2

P[Θ
(d,dl,··· ,dj ,dj−1)

(i,il,··· ,ij ,dj−1)
(1 · XOR(ν,−→ν j−1))]

=
∑

νj−1,...,l−2

P
[

Φ
(d,dl,··· ,dj ,0)

(i,il,··· ,ij)
(XOR(ν,−→ν j−1)); u0 = · · · = uj−2 = 0; b = ν

]

︸ ︷︷ ︸

= p1

+
n∑

dj−1=1

∑

νj−1,...,l−2













j−2
∑

l′=0

∑

wj−2∈[n],

...
wj−l′−2∈[n]

P












Φ
(d,dl,··· ,dj ,dj−1)

(i,il,··· ,ij ,dj−1)
(XOR(ν,−→ν j−1), wj−2);

flen(wj−2) = l′;
fpath(wj−2) = (wj−l′−2, · · · , wj−2);

uj−2 = wj−2; · · · ; uj−l′−2 = wj−l′−2;
uj−l′−3 = · · · = u0 = 0; bj−2 = ν;
b = bj−l′−2 = · · · = bj−3 = 1⊕ ν
























︸ ︷︷ ︸

= p2

40

The first term, p1, in the right hand side can easily be shown to be equal to

1

2

(
1

2n+ 1

)j−1 ∑

νj−1,...,l−2

PGamej−1,all

[

Φ
(dj−1)
−→ν j−1

]

The second term, p2, is harder to tackle. For any l
′ ∈ {0, · · · , j−2} and −→w = (wj−l′−2, · · · , wj−2) ∈

[n]l
′+1, define the following two events:

E
(l′,−→w)
j,ν,1 =

(

Φ
(d,dl,··· ,dj ,dj−1)

(i,il,··· ,ij ,dj−1)
(XOR(ν,−→ν j−1), wj−2);

flen(wj−2) = l′; fpath(wj−2) = (wj−l′−2, · · · , wj−2)

)

E
(l′,−→w)
j,ν,2 =

(
uj−2 = wj−2; · · · ; uj−l′−2 = wj−l′−2; uj−l′−3 = · · · = u0 = 0;

bj−2 = ν; b = bj−l′−2 = · · · = bj−3 = 1⊕ ν

)

P[E
(l′,−→w)
j,ν,2], for any valid choice of l

′ and −→w , is equal to 1
2(2n+1)j−1

. Thus,

p2 =
n∑

dj−1=1

∑

νj−1,...,l−2





j−2
∑

l′=0

∑

−→w∈[n]l
′+1

P
[

E
(l′,−→w)
j,ν,1 ; E

(l′,−→w)
j,ν,2

]





=
n∑

dj−1=1

∑

νj−1,...,l−2





j−2
∑

l′=0

∑

−→w∈[n]l
′+1

P
[

E
(l′,−→w)
j,ν,1 | E

(l′,−→w)
j,ν,2

]

·P
[

E
(l′,−→w)
j,ν,2

]





=
1

2(2n+ 1)j−1

n∑

dj−1=1

∑

νj−1,...,l−2





j−2
∑

l′=0

∑

−→w∈[n]l
′+1

P
[

E
(l′,−→w)
j,ν,1 | E

(l′,−→w)
j,ν,2

]





For any fixed l′ and −→w , the conditional probability P
[

E
(l′,−→w)
j,ν,1 | E

(l′,−→w)
j,ν,2

]

is equal to the probability

that event E
(l′,−→w)
j,ν,1 occurs in Gamej−1,all (again, this involves showing a one-to-one correspon-

dance between transcripts in Game0 conditioned on event E
(l′,−→w)
j,ν,2 occurring and transcripts in

Gamej−1,all; details are omitted) and using this fact, we get that p2 equals

1

2(2n+ 1)j−1

n∑

dj−1=1

∑

νj−1,...,l−2





j−2
∑

l′=0

∑

−→w∈[n]l
′+1

PGamej−1,all

[

E
(l′,−→w)
j,ν,1

]





=
1

2(2n+ 1)j−1

n∑

dj−1=1

∑

νj−1,...,l−2

j−2
∑

l′=0

∑

−→w∈[n]l
′+1

PGamej−1,all






Φ
(d,dl,··· ,dj ,dj−1)

(i,il,··· ,ij ,dj−1)
(XOR(ν,−→ν j−1), wj−2);

flen(wj−2) = l′;
fpath(wj−2) = (wj−l′−2, · · · , wj−2)






=
1

2(2n+ 1)j−1

n∑

dj−1=1

∑

νj−1,...,l−2

∑

wj−2∈[n]

PGamej−1,all

[

Φ
(d,dl,··· ,dj ,dj−1)

(i,il,··· ,ij ,dj−1)
(XOR(ν,−→ν j−1), wj−2)

]

=
1

2(2n+ 1)j−1

n∑

dj−1=1

∑

νj−1,...,l−2

PGamej−1,all

[

Φ
(d,dl,··· ,dj ,dj−1)

(i,il,··· ,ij)
(XOR(ν,−→ν j−1))

]

=
1

2(2n+ 1)j−1

n∑

dj−1=1

∑

νj−1,...,l−2

PGamej−1,all

[

Φ
(dj−1)
−→ν j−1

]

41

Thus,

P[E
(1)
j,d,i,ν] = p1 + p2

=
1

2(2n+ 1)j−1

n∑

dj−1=0

∑

νj−1,...,l−2

PGamej−1,all

[

Φ
(dj−1)
−→ν j−1

]

A.2.5 Proof of the Telescoping Sums Lemma (Lemma A.6)

We will prove the lemma using induction over j. Recall the expression for ∆j (equation 6):

∆j =
∑

d∈[n],
i∈[d]

∑

dl∈[n],
il∈[dl]

· · ·
∑

dj+1∈[n],
ij+1∈[dj+1]




P[OA; Ψ

(d,dl,··· ,dj+1)

(i,il,··· ,ij+1)
; b = 0]

− P[OA; Ψ
(d,dl,··· ,dj+1)

(i,il,··· ,ij+1)
; b = 1]





When j = 0, this becomes:

∆0 =
∑

d∈[n],
i∈[d]

∑

dl∈[n],
il∈[dl]

· · ·
∑

d1∈[n],
i1∈[d1]

[

P[OA; Ψ
(d,dl,··· ,d1)
(i,il,··· ,i1)

; b = 0]

− P[OA; Ψ
(d,dl,··· ,d1)
(i,il,··· ,i1)

; b = 1]

]

Using the hybrid cancellation lemma, part 4, we can re-write this as

∆0 =
∑

d∈[n],
i∈[d]

∑

dl∈[n],
il∈[dl]

· · ·
∑

d1∈[n],
i1∈[d1]







∑

ν0,ν1,··· ,νl−2∈{0,1},
νl−1=0






P[OA; Θ
(d,dl,··· ,d1)
(i,il,··· ,i1)

(XOR(0,−→ν 0))]

− P[OA; Θ
(d,dl,··· ,d1)
(i,il,··· ,i1)

(XOR(1,−→ν 0))]












From this, and the fact that ∆0 = ∆0, it follows that Lemma A.6 is true for j = 0.

Suppose that for some ĵ > 0, the lemma is true for j = ĵ − 1, that is:

∆ĵ−1 =
∑

d∈[n],
i∈[d]

∑

dl∈[n],
il∈[dl]

· · ·
∑

d
ĵ
∈[n],

i
ĵ
∈[d

ĵ
]








∑

ν
ĵ−1,··· ,νl−2∈{0,1},

νl−1=0







P[OA; Θ
(d,dl,··· ,dĵ)

(i,il,··· ,iĵ)
(XOR(0,−→ν ĵ−1))]

− P[OA; Θ
(d,dl,··· ,dĵ)

(i,il,··· ,iĵ)
(XOR(1,−→ν ĵ−1))]














We will show that the lemma is also true for j = ĵ. In the sequel, we will denote any sequence
of summations of the form

∑

d∈[n],
i∈[d]

∑

dl∈[n],
il∈[dl]

· · ·
∑

dj∈[n],
ij∈[dj]

by
∑

d,i,dl,··· ,dj ,ij
and one of the form

∑

νj ,νj+1,··· ,νl−2∈{0,1},
νl−1=0

by
∑

ν+j
. From the inductive hypoth-

esis, we have:

42

∆ĵ−1 =
∑

d,i,dl,··· ,dĵ ,iĵ

∑

ν+
ĵ−1







P[OA; Θ
(d,dl,··· ,dĵ)

(i,il,··· ,iĵ)
(XOR(0,−→ν ĵ−1))]

− P[OA; Θ
(d,dl,··· ,dĵ)

(i,il,··· ,iĵ)
(XOR(1,−→ν ĵ−1))]







=
∑

d,i,dl,··· ,dĵ ,iĵ

∑

ν+
ĵ−1







P[OA; Θ
(d,dl,··· ,dĵ)

(i,il,··· ,iĵ)
((νĵ−1, νĵ−1 ⊕ νĵ , · · · , νl−2 ⊕ νl−1))]

− P[OA; Θ
(d,dl,··· ,dĵ)

(i,il,··· ,iĵ)
((νĵ−1, νĵ−1 ⊕ νĵ , · · · , νl−2 ⊕ νl−1))]







Let us now expand the innermost sequence of summations based on the value assigned to νĵ−1.

∆ĵ−1 =
∑

d,i,dl,··· ,dĵ ,iĵ

∑

ν+
ĵ












P[OA; Θ
(d,dl,··· ,dĵ)

(i,il,··· ,iĵ)
((0, νĵ , νĵ ⊕ νĵ+1, · · · , νl−2 ⊕ νl−1))]

+ P[OA; Θ
(d,dl,··· ,dĵ)

(i,il,··· ,iĵ)
((1, νĵ , νĵ ⊕ νĵ+1, · · · , νl−2 ⊕ νl−1))]

− P[OA; Θ
(d,dl,··· ,dĵ)

(i,il,··· ,iĵ)
((1, νĵ , νĵ ⊕ νĵ+1, · · · , νl−2 ⊕ νl−1))]

− P[OA; Θ
(d,dl,··· ,dĵ)

(i,il,··· ,iĵ)
((0, νĵ , νĵ ⊕ νĵ+1, · · · , νl−2 ⊕ νl−1))]












=
∑

d,i,dl,··· ,dĵ ,iĵ

∑

ν+
ĵ












P[OA; Θ
(d,dl,··· ,dĵ)

(i,il,··· ,iĵ)
(0 · XOR(0,−→ν ĵ))]

+ P[OA; Θ
(d,dl,··· ,dĵ)

(i,il,··· ,iĵ)
(1 · XOR(1,−→ν ĵ))]

− P[OA; Θ
(d,dl,··· ,dĵ)

(i,il,··· ,iĵ)
(1 · XOR(0,−→ν ĵ))]

− P[OA; Θ
(d,dl,··· ,dĵ)

(i,il,··· ,iĵ)
(0 · XOR(1,−→ν ĵ))]












=
∑

d,i,dl,··· ,dĵ+1,iĵ+1

∑

d
ĵ
∈[n]

∑

i
ĵ
∈[d

ĵ]

∑

ν+
ĵ












P[OA; Θ
(d,dl,··· ,dĵ)

(i,il,··· ,iĵ)
(0 · XOR(0,−→ν ĵ))]

− P[OA; Θ
(d,dl,··· ,dĵ)

(i,il,··· ,iĵ)
(1 · XOR(0,−→ν ĵ))]

+ P[OA; Θ
(d,dl,··· ,dĵ)

(i,il,··· ,iĵ)
(1 · XOR(1,−→ν ĵ))]

− P[OA; Θ
(d,dl,··· ,dĵ)

(i,il,··· ,iĵ)
(0 · XOR(1,−→ν ĵ))]












=
∑

d,i,dl,··· ,dĵ+1,iĵ+1

∑

d
ĵ
∈[n]

∑

ν+
ĵ














∑

i
ĵ
∈[d

ĵ
]




P[OA; Θ

(d,dl,··· ,dĵ)

(i,il,··· ,iĵ)
(0 · XOR(0,−→ν ĵ))]

− P[OA; Θ
(d,dl,··· ,dĵ)

(i,il,··· ,iĵ)
(1 · XOR(0,−→ν ĵ))]





+
∑

i
ĵ
∈[d

ĵ
]




P[OA; Θ

(d,dl,··· ,dĵ)

(i,il,··· ,iĵ)
(1 · XOR(1,−→ν ĵ))]

− P[OA; Θ
(d,dl,··· ,dĵ)

(i,il,··· ,iĵ)
(0 · XOR(1,−→ν ĵ))]


















And now let us apply the hybrid cancellation lemma (part 2) to the terms in the innermost

43

summations.

∆ĵ−1 =
∑

d,i,dl,··· ,dĵ+1,iĵ+1

∑

d
ĵ
∈[n]

∑

ν+
ĵ

















P[OA; Θ

(d,dl,··· ,dĵ+1,dĵ)

(i,il,··· ,iĵ+1,1)
(0 · XOR(0,−→ν ĵ))]

− P[OA; Θ
(d,dl,··· ,dĵ+1,dĵ)

(i,il,··· ,iĵ+1,dĵ)
(1 · XOR(0,−→ν ĵ))]





+




P[OA; Θ

(d,dl,··· ,dĵ+1,dĵ)

(i,il,··· ,iĵ+1,dĵ)
(1 · XOR(1,−→ν ĵ))]

− P[OA; Θ
(d,dl,··· ,dĵ+1,dĵ)

(i,il,··· ,iĵ+1,1)
(0 · XOR(1,−→ν ĵ))]


















(7)

Now, let us recall the expression for ∆ĵ (equation 6), and let us re-write it in terms of the Θ’s
by invoking part 4 of the hybrid cancellation lemma:

∆ĵ =
∑

d,i,dl,··· ,dĵ+1,iĵ+1

∑

0≤d
ĵ
≤n








∑

ν
ĵ
,··· ,νl−2∈{0,1},

νl−1=0




P[OA; Θ

(d,dl,··· ,dĵ+1,dĵ)

(i,il,··· ,iĵ+1,dĵ)
(1 · XOR(0,−→ν ĵ))]

− P[OA; Θ
(d,dl,··· ,dĵ+1,dĵ)

(i,il,··· ,iĵ+1,dĵ)
(1 · XOR(1,−→ν ĵ))]












=
∑

d,i,dl,··· ,dĵ+1,iĵ+1

∑

d
ĵ
∈[n]

∑

ν+
ĵ




P[OA; Θ

(d,dl,··· ,dĵ+1,dĵ)

(i,il,··· ,iĵ+1,dĵ)
(1 · XOR(0,−→ν ĵ))]

− P[OA; Θ
(d,dl,··· ,dĵ+1,dĵ)

(i,il,··· ,iĵ+1,dĵ)
(1 · XOR(1,−→ν ĵ))]





+
∑

d,i,dl,··· ,dĵ+1,iĵ+1

∑

ν+
ĵ




P[OA; Θ

(d,dl,··· ,dĵ+1,0)

(i,il,··· ,iĵ+1,0)
(1 · XOR(0,−→ν ĵ))]

− P[OA; Θ
(d,dl,··· ,dĵ+1,0)

(i,il,··· ,iĵ+1,0)
(1 · XOR(1,−→ν ĵ))]



(8)

Let us now use the above equation and equation 7 to express ∆ĵ in terms of the Θ’s:

∆ĵ = ∆ĵ−1 +∆ĵ

=
∑

d,i,dl,··· ,dĵ+1,iĵ+1

∑

d
ĵ
∈[n]

∑

ν+
ĵ


























P[OA; Θ

(d,dl,··· ,dĵ+1,dĵ)

(i,il,··· ,iĵ+1,1)
(0 · XOR(0,−→ν ĵ))]

− P[OA; Θ
(d,dl,··· ,dĵ+1,dĵ)

(i,il,··· ,iĵ+1,dĵ)
(1 · XOR(0,−→ν ĵ))]





+




P[OA; Θ

(d,dl,··· ,dĵ+1,dĵ)

(i,il,··· ,iĵ+1,dĵ)
(1 · XOR(1,−→ν ĵ))]

− P[OA; Θ
(d,dl,··· ,dĵ+1,dĵ)

(i,il,··· ,iĵ+1,1)
(0 · XOR(1,−→ν ĵ))]





+




P[OA; Θ

(d,dl,··· ,dĵ+1,dĵ)

(i,il,··· ,iĵ+1,dĵ)
(1 · XOR(0,−→ν ĵ))]

− P[OA; Θ
(d,dl,··· ,dĵ+1,dĵ)

(i,il,··· ,iĵ+1,dĵ)
(1 · XOR(1,−→ν ĵ))]



























+
∑

d,i,dl,··· ,dĵ+1,iĵ+1

∑

ν+
ĵ




P[OA; Θ

(d,dl,··· ,dĵ+1,0)

(i,il,··· ,iĵ+1,0)
(1 · XOR(0,−→ν ĵ))]

− P[OA; Θ
(d,dl,··· ,dĵ+1,0)

(i,il,··· ,iĵ+1,0)
(1 · XOR(1,−→ν ĵ))]





Notice that two pairs of terms in the first sequence of summations (enclosed in the tall square

44

braces

[

· · ·

]

) cancel out, leaving us with the following:

∆ĵ =
∑

d,i,dl,··· ,dĵ+1,iĵ+1

∑

d
ĵ
∈[n]

∑

ν+
ĵ




P[OA; Θ

(d,dl,··· ,dĵ+1,dĵ)

(i,il,··· ,iĵ+1,1)
(0 · XOR(0,−→ν ĵ))]

− P[OA; Θ
(d,dl,··· ,dĵ+1,dĵ)

(i,il,··· ,iĵ+1,1)
(0 · XOR(1,−→ν ĵ))]





+
∑

d,i,dl,··· ,dĵ+1,iĵ+1

∑

ν+
ĵ




P[OA; Θ

(d,dl,··· ,dĵ+1,0)

(i,il,··· ,iĵ+1,0)
(1 · XOR(0,−→ν ĵ))]

− P[OA; Θ
(d,dl,··· ,dĵ+1,0)

(i,il,··· ,iĵ+1,0)
(1 · XOR(1,−→ν ĵ))]





=
∑

d,i,dl,··· ,dĵ+1,iĵ+1

∑

ν+
ĵ

















P[OA; Θ

(d,dl,··· ,dĵ+1,0)

(i,il,··· ,iĵ+1,0)
(1 · XOR(0,−→ν ĵ))]

+
∑

d
ĵ
∈[n]P[OA; Θ

(d,dl,··· ,dĵ+1,dĵ)

(i,il,··· ,iĵ+1,1)
(0 · XOR(0,−→ν ĵ))]





−




P[OA; Θ

(d,dl,··· ,dĵ+1,0)

(i,il,··· ,iĵ+1,0)
(1 · XOR(1,−→ν ĵ))]

+
∑

d
ĵ
∈[n]P[OA; Θ

(d,dl,··· ,dĵ+1,dĵ)

(i,il,··· ,iĵ+1,1)
(0 · XOR(1,−→ν ĵ))]


















One final invocation of the hybrid cancellation lemma (this time, part 3) gives us the desired
expression for ∆ĵ :

∆ĵ =
∑

d,i,dl,··· ,dĵ+1,iĵ+1

∑

ν+
ĵ




P[OA; Θ

(d,dl,··· ,dĵ+1)

(i,il,··· ,iĵ+1)
(XOR(0,−→ν ĵ))]

− P[OA; Θ
(d,dl,··· ,dĵ+1)

(i,il,··· ,iĵ+1)
(XOR(1,−→ν ĵ))]





=
∑

d∈[n],
i∈[d]

∑

dl∈[n],
il∈[dl]

· · ·
∑

d
ĵ+1∈[n],

i
ĵ+1∈[dĵ+1]

∑

ν
ĵ
,··· ,νl−2∈{0,1},

νl−1=0




P[OA; Θ

(d,dl,··· ,dĵ+1)

(i,il,··· ,iĵ+1)
(XOR(0,−→ν ĵ))]

− P[OA; Θ
(d,dl,··· ,dĵ+1)

(i,il,··· ,iĵ+1)
(XOR(1,−→ν ĵ))]





45

	Introduction
	The Main Result
	The Application
	Proof of Theorem 2.4
	The Reduction
	The Analysis.
	Proof of Lemma A.2
	Proof of Claim A.3
	Proof of Claim A.4
	Proof of the Hybrid Cancellation Lemma (Lemma A.5)
	Proof of the Telescoping Sums Lemma (Lemma A.6)

