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Abstract

Some online algorithms for linear classifica-
tion model the uncertainty in their weights
over the course of learning. Modeling the
full covariance structure of the weights can
provide a significant advantage for classifica-
tion. However, for high-dimensional, large-
scale data, even though there may be many
second-order feature interactions, it is com-
putationally infeasible to maintain this co-
variance structure. To extend second-order
methods to high-dimensional data, we de-
velop low-rank approximations of the covari-
ance structure. We evaluate our approach on
both synthetic and real-world data sets us-
ing the confidence-weighted (Dredze et al.,
2008; Crammer et al., 2009a) online learning
framework. We show improvements over di-
agonal covariance matrices for both low and
high-dimensional data.

1 Introduction

Online linear classification is well-suited for learning
from large, high-dimensional, rapidly growing data
sets because it makes a single pass over the training
data and only needs to store the current example and
the current classification hypothesis. Among online
linear classifier learners, those that maintain second-
order information have shown special promise because
they offer faster convergence on a single pass over the
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data. In confidence-weighted (CW) learning (Dredze
et al., 2008; Crammer et al., 2009a) and Bayesian lo-
gistic regression (Jaakkola & Jordan, 2000; MacKay,
1992; Spiegelhalter & Lauritzen, 1990), second-order
information represents uncertainty about the linear
classifier’s feature weight estimates and can be mod-
eled as a Gaussian distribution over the classifier’s
weight vector. The mean of the weight vector is used
for classification, and the covariance matrix is used to
modulate the learning rate over different features.

Unfortunately, storing and updating the full covari-
ance matrix requires time and space quadratic in the
number of features, which becomes prohibitively ex-
pensive when that number grows much beyond 10%.
Efficient diagonal approximations, which scale linearly
with the number of features, are often used in prac-
tice (Dredze et al., 2008; Crammer et al., 2009a; Cram-
mer et al., 2009b). However, these approximations
sacrifice information about cross-feature correlations
that can lead to faster convergence. Thus diagonal
approximations trade accuracy for speed.

We investigate the nature of this tradeoff, using syn-
thetic experiments to show when it is advantageous to
use a full covariance rather than a diagonal covariance
matrix. We consider variations in the data’s dimen-
sionality, the amount of correlation among the fea-
tures, and the amount of noise in the data set. We
then propose a novel method for online low-rank ap-
proximation of the inverse covariance matrices. Our
approach forms a practical middle ground, improving
performance over diagonal methods without incurring
the high computational costs of modeling full covari-
ance. We base our methods on the CW framework,
although we believe the approach is also applicable
to other covariance-tracking online algorithms such as
Bayesian logistic regression, the second-order percep-
tron (Cesa-Bianchi et al., 2005) and quasi-Newton gra-
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dient descent (Bottou, 1998). We show empirical ben-
efits on a variety of real world data sets.

2 Confidence-Weighted Online
Learning

Online learning algorithms operate in rounds. During
round ¢, the algorithm receives an instance x; € R¢
and applies its current rule to make a prediction ;.
It then receives the true label y; and suffers a loss
L(yt,3:). Using this information, the algorithm up-
dates its prediction rule and proceeds to the next
round. The goal is to minimize cumulative loss.

In this work we consider binary classification problems
where g, y; € {=1,+1} and £(y,9:) = L(ye # §¢) is
the zero-one loss function. In this case, the cumula-
tive loss is simply the number of incorrect predictions
(mistakes). To predict §; we use a linear model param-
eterized by a weight vector w € R?, j; = sign(w - x;).

The design of the update rule has a significant impact
on performance. A simple approach is to increment
the weight vector by y;x; whenever the loss is nonzero;
this moves the score w - x; in the right direction and
yields the perceptron algorithm. A better approach in
many cases is the passive-aggressive rule, which scales
the perceptron update to ensure that x; is correctly
classified with margin (Crammer et al., 2006).

More recently, Dredze, Crammer and Pereira pro-
posed a new framework called confidence weighted
(CW) learning that allows the update rule to con-
sider confidence information about the model param-
eters (Dredze et al., 2008; Crammer et al., 2009a).
Rather than maintaining a single weight vector from
round to round, a CW learner maintains a Gaus-
sian distribution over weight vectors, parameterized
by a mean vector p € R? and a covariance matrix
3 € R4 that represents the learner’s confidence
about its parameter values. By accounting for the
shape of this distribution, CW algorithms can make
more effective updates to the weights, for example by
refining them preferentially along directions that are
currently low-confidence (high-variance).

At test time, one imagines drawing a weight vector
from the learned distribution and then using it to make
a prediction. However, for binary classification it turns
out that predictions made using the mean weight vec-
tor p are Bayes optimal with respect to sampling w
(because the Gaussian is symmetric) as well as simpler
to produce. Thus in practice the confidence informa-
tion X serves primarily as a regularizer for training.

The specific update used by CW classifiers is a passive-
aggressive rule modified to account for confidence in-

formation. Following round ¢, a weight vector drawn
from the updated distribution is required to correctly
classify @; with probability at least n € (0.5,1]. Sub-
ject to this constraint, the algorithm makes the low-
est possible KL divergence change to the hypothesis
weight distribution:

(o1, Ber) = min Dy, (V (1, B) [V (e, 2e))
(1)

st. Pryonus) e (w-x) > 0] > .

(2)

This optimization can be solved in closed form, yield-
ing the following update equations, known as the CW-
Stdev update (Crammer et al., 2009a):

My + 0y 24T, (3)
3 - iz By (4)

iyt
i1 =

The constants «; and (3; are nonnegative learning
rates computed as given in Eq. 22 of Crammer et al.
(2009a). We note that the covariance update can al-
ternatively be written in the inverse:
@

o= 0+ tfmT , (5)
as defined in Eq. 10-11 of Crammer et al. (2009a).
This representation of the update is particularly useful
for the factored inverse covariance approximation that
we discuss in Section 3.

2.1 High-Dimensional Applications

Some of the most successful applications of CW learn-
ing involve high-dimensional data, e.g., from natu-
ral language processing tasks (Crammer et al., 2009a;
Dredze et al., 2008; Ma et al., 2009; Dredze & Cram-
mer, 2008). Clearly, it is impractical to maintain a
full d? covariance matrix in those cases. Instead, ¥ is
approximated with a diagonal matrix to produce an al-
gorithm that scales linearly with the size of the feature
vocabulary. An empirically successful approximation
method is to begin with a diagonal matrix and project
back onto the set of diagonal matrices after each up-
date. This projection can be done using the /5 norm,
which simply drops the off-diagonal terms in Eq. (4),
or using KL-divergence, which corresponds to drop-
ping the off-diagonal terms in Eq. (5). Both of these
approaches work well in practice, and for simplicity we
proceed here using {5 projection.

2.2 Benefits of Full X

In diagonal CW learning, the element X, ;, of the co-
variance matrix encodes the learner’s confidence in the
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mean weight p, for feature p. Given the update rule
in Eq. (4), it is easy to see that ¥, , shrinks whenever
feature p is observed in the data; this corresponds to
increased confidence in 1, and smaller subsequent up-
dates to that value. Thus, the diagonal of X serves to
decay the effective learning rate on a per-feature basis,
hopefully leading to faster convergence.

However, off-diagonal elements of ¥, discarded by the
diagonal approximation, can also provide useful guid-
ance during training. In the following we attempt to
characterize some of the ways in which full 3 improves
training regularization compared to diagonal 3.

Consider a pair of binary features (z,,z,) that co-
occur frequently. We maintain a separate weight for
each of these features, and given enough data a learner
can estimate their values independently. However,
knowing that the features are correlated, we might
hope to do better by replacing them with a new pair of
features: (z, + x4, xp — x4). While this change has no
effect on the expressive power of the model (or its lit-
eral dimension), it does change its geometry: we have
replaced two similar features with one more common
feature and another that is usually zero.

In the context of diagonal CW learning, we are now
better equipped to learn from these data. Our con-
fidence about the weight for z, + z, will grow more
quickly than for x, — x4, because the observed values
Zp~+x4 are far from zero more often. This enables us to
quickly reduce the effective dimensionality of the learn-
ing problem, since we need not consider large changes
to weights that are highly confident. We no longer zig
(upon seeing feature p alone) and zag (upon seeing fea-
ture ¢ alone); instead we make consistent changes to
the newly combined weights. This is analogous to the
shift from gradient to conjugate gradient methods in
the optimization literature (Nocedal & Wright, 1999,
Figs. 5.1 and 5.2). While gradient descent will zig-
zag when the Hessian of the objective is non-diagonal,
conjugate methods effectively diagonalize the Hessian
and converge quickly and directly.

For our toy example, we have described a transforma-
tion of the features explicitly; however, similar effects
can be obtained adaptively and implicitly through the
use of full 3. While diagonal methods deal with each
feature independently, full methods can tie them to-
gether, simplifying the problem of locating a good
weight vector by regularizing the updates into an effec-
tively lower-dimensional space. Especially when there
are many features and relatively few examples, this
can be a significant advantage. We demonstrate this
effect with a simple synthetic experiment.

We begin each trial by sampling a true weight vector
w* € RY from a ten-dimensional normal distribution.

On round ¢, we flip ten coins to produce “true” bi-
nary features z; € {—1,+1}'° and compute the label
y: = sign(w* - z;). We then construct the observed
features by creating k duplicates of z; and randomly
flipping 5% of the resulting binary values, producing
x; € {—1,+1}19%_  These data share many properties
with the simple example discussed above.

We applied both full and diagonal CW methods to
data sets of varying size for k € {1,...,10} and
recorded the average difference in online accuracy
over 100 trials. The results are shown in Fig. 1(a).
When there are many features and few examples, full
CW learning significantly outperforms the diagonal
method (error bars not shown). To demonstrate the
regularizing effects of full CW we plot Tr(X;)/A1(24)
at each learning round ¢ for the 50 feature case, av-
eraged over 20 trials (Fig. 1(b)). Here, A1(3;) is the
largest eigenvalue of ¥;. We refer to this measure-
ment as the “effective dimension” because it char-
acterizes the eigenvalue distribution of ¥ as being
either spherical (high-dimension) or squashed (low-
dimension). When the effective dimension is low, the
learner has fewer degrees of freedom to update its pa-
rameters. From the figure it is clear that full CW
tightens its regularization more quickly. Note that the
two methods have roughly equal Tr(3) at each round.

From Fig. 1(a) we also see that, given enough data, di-
agonal CW learning significantly outperforms the full
version. This is because the same ability to adapt to
data co-dependencies that helps full CW learning dur-
ing the early rounds leads it to adapt to noise as it
approaches the optimal weight vector when the data
are not separable. For example, during rounds 400-500
of the 10 feature experiment (where both methods are
essentially converged), the diagonal algorithm adjusts
the angle of p, by an average of 0.81° per round, while
the full algorithm adjusts it by an average of 2.42° per
round. This increased “thrashing” leads to reduced
long-term performance of full CW learning.

These observations raise the question of possible inter-
mediates between full and diagonal learning that bal-
ance fast convergence (full) and efficient, robust learn-
ing in high dimension (diagonal). We explore such a
middle ground: a method that can approximate the
inter-feature correlations of full CW learning but also
scales well to high-dimensional data.

3 Factoring the Covariance Matrix

We observe that a matrix can be stored compactly if
it is well approximated by a matrix of low rank. In
our approach, we model the inverse covariance matrix
for CW as the sum of a diagonal matrix plus a low
rank positive semidefinite matrix, giving the following
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Figure 1: (a) Average accuracy gap between full and diagonal CW, averaged over 100 trials. Pluses indicate full
CW outperforming diagonal CW, minuses indicate the reverse, and the scale of each symbol depends linearly on
the magnitude of the gap. The largest minus reflects a gap of -7.5%, and the largest plus reflects a gap of 4.2%.
(b) Effective dimension of ¥ at each round, 50 features, averaged over 20 trials.

factored approximation where D is a d x d diagonal
matrix and R is a d X m rectangular matrix:

>'~D+RR". (6)

Intuitively, this approximation is well-suited to CW
because each update to the inverse covariance matrix
is the addition of a vector outer product.

The approximation in Eq. (6) is inspired by the statis-
tical method of factor analysis (Gorsuch, 1983). How-
ever, in standard factor analysis this approximation is
used to model the covariance matrix, not the inverse
covariance matrix; we will return to this point later.
For CW learning, the approximation in Eq. (6) has im-
portant advantages over purely low-rank approxima-
tions (e.g., singular value decomposition) that do not
include a diagonal component. First, for CW learning,
we require a proper Gaussian density over the weight
vector; the diagonal component in Eq. (6) is needed to
ensure that the density is normalizable. Second, the
diagonal component models the per-component errors
of the remaining low rank approximation, as opposed
to assuming that all weights are equally uncertain.
The latter assumption, though simplifying, is entirely
contrary to the spirit of CW learning. Finally, as we
show next, there are iterative updates for learning ap-
proximations of the form in Eq. (6) that scale well with
the dimensionality of the problem, whereas singular
value decomposition may not be feasible for matrices
of extremely large size. Indeed, one leading algorithm
for PCA in high-dimensional spaces is an iterative es-
timation procedure (Roweis, 1998) that can be viewed
as a special case of the algorithm for maximum likeli-
hood factor analysis. Although we focus on CW, our
approach can be applied to other second-order online
algorithms that need to store and maintain a positive
semidefinite matrix.

3.1 Approximation Algorithm

Our algorithm attempts to minimize a measure of dis-
crepancy between a target matrix P (assumed to be
positive semidefinite) and its approximation D+RR'".
To measure discrepancy, we use the KL divergence
between a pair of multivariate Gaussian distributions
with the same mean (assumed without loss of general-
ity to lie at the origin) but different covariance matri-
ces Pand D+ RR'1:

min Dxr(N(0, P) | N(0,D+RRT))  (7)
Unlike the updates for CW learning in section 2, the
optimization in Eq. (7) cannot be solved in closed
form. However, we can search for a local minimum of
the KL divergence by adapting the iterative updates
for maximum likelihood factor analysis. As shorthand,
we define the following matrices:

® = I+R'D'R), (8)
Y = ®R'D. (9)

Note that the matrices ® and Y depend on the cur-
rent approximation parameters, namely the rectangu-
lar matrix R and the diagonal matrix D. In terms of
these matrices, the updates to minimize Eq. (7) are

R — PY' (®+YPY") !, (10)
D « diag(P - RYP). (11)

To minimize Eq. (7), we alternate between recomput-
ing the matrices in Egs. (8-9) and updating the model
parameters in Eqgs. (10-11). Applied in this way, the
updates converge monotonically to a local minimum of
the KL divergence in Eq. (7). Note that the “target”

matrix P remains fixed throughout this procedure.

!This distance between matrices is aks as matrix
Itakura-Saito or log-det divergence
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synthetic experiment in Figure 2.
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Figure 2: Synthetic data cumulative error for CW-
fact(m), CW-full and CW-diag.

3.2 Integration with CW Learning

The algorithm in Section 3.1 integrates naturally with
CW learning to provide a compact approximation for
full covariance matrices. We refer to this approach as
CW-fact. To avoid performing the relatively expensive
minimization procedure described in Egs. (8-11) fol-
lowing every update, we augment our approximation
with a buffer:

»'=D+RR'" +BB", (12)

where B is a d X m matrix holding up to m of the
most recent exact updates. We update the buffer B
after each example, but fit the factored model using
Egs. (8-11) only when the buffer becomes full.

We initialize D to the identity matrix, and R and B
to zero. The first m updates to X dictated by the
CW algorithm are stored directly in R. Using the
inverse rule in Eq. (5), the ¢th column of R is given
by (yf)%wt. The next m updates fill B in the same

Ut

way. When the buffer is full, we run the algorithm in
Section 3.1 to compress the contents of both R and B
into D and R (where we set the target matrix to P =
D+RR'™ + BB'). This leaves the buffer empty, and
the cycle of filling the buffer and compressing repeats
for the remainder of the examples.

3.3 Comparison with full and diagonal
covariance representations

We begin our empirical results by demonstrating that
CW-fact occupies a middle ground between CW-full
and CW-diag on the synthetic data described in Sec-
tion 2. This time we generate 1000 examples with 1000
features (k = 100).

Figure 2 shows the cumulative mistake counts av-
eraged over 100 runs. We include perceptron and
passive-aggressive results for reference. As we in-
crease m, the accuracy of CW-fact approaches CW-
full. (CW-fact’s performance did not improve beyond

Time w/o

Time (s) buffer (s) | Mem (KB)
CW-diag 0.09 — 7.81
CW-fact2 1.61 2.61 87.21
CW-fact4 1.35 4.11 181.27
CW-fact8 1.21 7.16 370.15
CW-fact16 1.50 16.45 750.90
CW-full 7.00 — 7812.50

m = 16, which makes sense given the ten-dimensional
underlying distribution.) Table 1 shows the average
runtime and memory overhead for the different varia-
tions of CW in this experiment. The memory usage for
CW-fact is an order of magnitude improvement over
CW-full, and the runtime is 5x faster. Thus, CW-fact
provides an adjustable compromise between the high-
accuracy of CW-full and the low-overhead of CW-diag.

3.4 Benefits of buffering and X"

Before we move on, it is worth briefly addressing the
effect of the buffer matrix on the performance of CW-
fact. Figure 3(a) shows the results of the same syn-
thetic experiment when we eliminate the buffer. The
difference in accuracy from the experiment in Figure 2
is negligible. However, Table 1 shows that the compu-
tational cost is quite high.

We also tested the performance of buffering alone; that
is, simply throwing out the oldest update whenever a
new one arrives. The results are in Figure 3(b). They
show that while buffering alone offers some benefit, it
is less effective than compressing information into R
to provide a long-term summary of updates to X7,
as done for CW-fact.

Finally, the algorithm in Section 3.1 appears to be
a good fit for approximating >~ 1, since the update
Eq. (5) is additive, matching the form of the approxi-
mation. However, we could also consider approximat-
ing ¥ in a similar way, subtracting instead of adding
the buffer term in Eq. 12. Figure 3(c) shows that per-
formance is dramatically reduced in this case, perhaps
because the additive approximation is a poor fit for
the subtractive 3 update Eq. (4).

4 Large-Scale Learning

We evaluate CW learning with our factored approx-
imation (CW-fact) on several high-dimensional real-
world data sets where the number of features exceeds
the number of examples and many features are cor-
related. We use perceptron, passive-aggressive (PA)
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Figure 3: Evaluating alternative design decisions for CW-fact with respect to buffering and whether to approxi-
mate ¥ vs. ¥ 7', Results for perceptron, PA, CW-diag and CW-full are repeated for reference.

learning (Crammer et al., 2006), and diagonal CW as
baselines. For perceptron and PA, we make predic-
tions at each round using the average of all previous
weight vectors, which tends to outperform the single
most recent weight vector.

4.1 Detecting malicious URLs

We evaluate CW-fact on a 20-day subset of a live URL
data set (Ma et al., 2009) with about 1 million binary
features and 64 real-valued features scaled to the in-
terval [0,1]. The goal is to determine whether each
website is malicious; the ratio of positive to negative
examples is 1 : 2. There are 20,000 examples collected
per day. We subsample the data, preserving the tem-
poral ordering, to produce error bars: in each run an
example has a 50% chance of being included, resulting
in 10,000 examples per day. Results are computed on
10 samples of 200,000 examples each.

Fig. 4 shows absolute and relative mistake counts over
time. CW-fact provides a consistent, 5% relative im-
provement over CW-diag, which is itself superior to
PA and perceptron. This corroborates our findings
in Sec. 3, which show improvements in accuracy when
there are more features than examples and many fea-
tures are correlated.

4.2 Web spam

We next consider the web spam data from the PAS-
CAL Large Scale Learning Challenge (Sonnenburg
et al., 2008). We divide the data set into 35 epochs
containing 10,000 examples each. Over 10 trials, we
include an example in the evaluation data with proba-
bility 0.5 (on average, 5,000 examples per epoch). This
results in 680,000 features and an average of 175,000
examples per run. The default representation contains
trigram counts, which were normalized so that each
example had unit length.

Results (Fig. 5) are similar to those on the URL data:
CW-fact outperforms CW-diag significantly (18% rel-
ative). Again, this data set has more features than ex-

amples and various sets of features are correlated, for
example trigrams with shared bigrams or unigrams.

4.3 Stock market data

Given computational resource constraints, the choice
of learning method effectively determines the size of
the feature set that can be used in practice. CW-diag
allows very large sets, while CW-full imposes relatively
harsh limits. We show here, using a stock market
prediction task, that CW-fact offers an advantageous
middle ground: performance losses from approximat-
ing the covariance matrix can be compensated by im-
provements from the use of a more informative feature
set, giving the highest overall performance with lim-
ited resources.

The task is to predict whether the price of a target
stock went up or down each day, based on the open,
high, low, and close prices of a set of predictor stocks
for that day and the preceding 49 days (200 features
per predictor). The feature set is thus highly corre-
lated. Our data spans a 15-year period from 1994 to
2009, for a total of 4006 instances (2120 up days and
1886 down days). We use DELL as a target, although
other tested targets showed similar results. The num-
ber of predictor stocks is variable, offering a tradeoff
between speed and accuracy.

Table 2 shows the number of mistakes made by each
method for a range of predictor set sizes, subject to
a memory constraint of 2GB and a time constraint of
two hours. Each result is the mean over 10 random
draws of the predictor stocks from our collection of
378, excluding DELL.

CW-diag handles all feature set sizes, but is unable
to extract useful signal; note that perceptron and
PA returned similarly poor results on these data (not
shown). CW-full extracts the most performance from
each feature set, but incurs large computational costs,
requiring 54 minutes and 200MB of memory for the
25-predictor test. Completing the 100-predictor test
would have required over 3GB of memory and more
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Table 2: Number of mistakes on stock market data.
Values are omitted for any test that required more
than 2GB of memory (}) or two hours of runtime (x).
All differences of at least 44 mistakes are statistically
significant at p = 0.01 based on a paired t-test.

] Predictors H CW-diag \ CW-fact8 \ CW-full ‘

1 2141.0 2083.1 2028.3
10 2142.0 2036.8 1891.4
25 2142.0 1949.3 1806.3
100 2142.0 1779.0 i
250 2142.0 1749.9 .
378 2142.0 % .

than 10 hours. CW-fact, on the other hand, requires
only 38MB of memory and 63 minutes to run with 250
predictors, and achieves the overall best result.

4.4 Document Classification

Finally, we evaluate CW-fact on the Reuters, 20
Newsgroups and Sentiment document classification
data sets used earlier to evaluate CW learning (Dredze
et al., 2008). For each data set, we performed 10 runs
of the experiment where we randomized the order of
the examples. The results in Table 3 show that CW-
fact consistently improves over CW-diag.

5 Conclusion and Related Work

We examined the effect of covariance matrix represen-
tation on confidence-weighted learning, but we believe
our results have the potential to generalize to other
second-order online learning algorithms. Depending
on properties of the data, full covariance or an approx-
imate covariance matrix obtained by factored repre-
sentations may improve on the more efficient diagonal
covariance version of CW learning.

A desire for compact representations of second-order
information arises in contexts outside of our own work.
For instance, in the limited memory BFGS method
(L-BFGS) for quasi-Newton algorithms, the Hessian
is computed based on the last m updates (Liu & No-
cedal, 1989). This is similar in spirit to buffering the
last m updates as described in Section 3.2. Other
techniques such as Kronecker factorization and incom-
plete Cholesky factorization have been explored in the
context of approximating kernel matrices for support-
vector machine training (Wu et al., 2006).

In synthetic experiments and large-scale applications,
we showed that full and factored representations per-
formed better than diagonal when there were many
correlated features and the effective dimensionality of
the data was small. Conversely, we also showed that
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Table 3: Document Classification: Average error rates (%) and standard deviations for perceptron, PA, CW-diag

and CW-fact8 on Reuters, 20 Newsgroups and Sentiment binary classification tasks.

[ Task [ Examples [ Features || Perceptron | PA [ CW-diag [ CW-fact8 |
Reuters
business 2000 12167 219 +£0.7 | 190+ 0.5 | 187+ 0.6 | 18.1 = 0.5
insurance 2000 9094 178 +£0.5 | 155+ 0.8 | 13.7 0.6 | 12.7 £ 0.5
retail 2000 8768 264 +1.0 | 243 +0.6 | 209 £ 0.7 | 18.4 + 0.5
20 Newsgroups
comp 1943 29409 270+ 56 | 196 =09 | 13.6 = 0.5 | 12.3 + 0.6
sci 1971 38699 21.9 £ 4.3 | 13.6 £ 0.7 8.1+ 04 7.1 +04
talk 1850 44397 23.2 + 54 8.6 £ 0.8 4.7 + 0.3 3.7+ 04
Sentiment
apparel 1940 63088 227+ 06 | 189 +0.5 | 175+ 0.5 | 16.8 =04
books 18391 1042928 186 0.3 | 16.8 = 0.1 | 14.7 £ 0.1 | 14.3 £+ 0.1
dvd 13152 850348 202 +04 | 180+0.2 | 15.8 0.2 | 15.4 =+ 0.2
electronics 5774 249863 20.7 £ 0.6 | 180+ 0.5 | 16.1 £ 0.3 | 15.5 = 0.3
kitchen 5212 193467 204 +04 | 172 4+0.2 | 153 0.2 | 14.8 = 0.2
music 12927 666927 205 £ 0.3 | 187 +0.2 | 16.3 £ 0.1 | 15.7 = 0.2
video 4349 346659 25,0+ 04 | 22.1 0.3 | 201 =04 | 19.4 +04

full methods performed worse when the data was noisy
or had fewer correlations between features.

Acknowledgments: We thank the reviewers for
valuable feedback. Koby Crammer is a Horev Fel-
low, supported by the Taub Foundations. This work
was also supported by National Science Foundation
grants NSF-0238323, NSF-0433668 and NSF-0829469
and by generous research, operational and in-kind sup-
port from Cisco, Google, Microsoft, Yahoo and the
UCSD Center for Networked Systems.

References

Bottou, L. (1998). Online Learning and Stochastic Ap-
proximations. In Online Learning and Neural Networks,
9-42. Cambridge, UK: Cambridge University Press.

Cesa-Bianchi, N., Conconi, A., & Gentile, C. (2005). A
Second-Order Perceptron Algorithm. SIAM Journal on
Computing, 34, 640-668.

Crammer, K., Dekel, O., Shalev-Shwartz, S., & Singer, Y.
(2006). Online Passive-Aggressive Algorithms. Journal
of Machine Learning Research, 7, 551-585.

Crammer, K., Dredze, M., & Pereira, F. (2009a). Ex-
act Convex Confidence-Weighted Learning. Advances
in Neural Information Processing Systems 21 (pp. 345—
352).

Crammer, K., Kulesza, A., & Dredze, M. (2009b). Adap-
tive Regularization of Weight Vectors. Advances in Neu-
ral Information Processing Systems 22 (pp. 414-422).

Dredze, M., & Crammer, K. (2008). Online Methods
for Multi-Domain Learning and Adaptation. Empirical
Methods in Natural Language Processing (EMNLP).

Dredze, M., Crammer, K., & Pereira, F. (2008).
Confidence-Weighted Linear Classification. Proceedings
of the International Conference on Marchine Learning
(ICML) (pp. 264-271). Helsinki, Finland: Omnipress.

Gorsuch, R. L. (1983). Factor Analysis. New York, NY:
Lawrence Erlbaum Associates. 2nd edition.

Jaakkola, T. S., & Jordan, M. I. (2000). Bayesian Param-
eter Estimation via Variational Methods. Statistics and
Computing, 10, 25-37.

Liu, D. C., & Nocedal, J. (1989). On the Limited Memory
BFGS Method for Large Scale Optimization. Mathemat-
ical Programming, 45, 503-528.

Ma, J., Saul, L. K., Savage, S., & Voelker, G. M. (2009).
Identifying Suspicious URLs: An Application of Large-
Scale Online Learning. Proc. of the International Con-
ference on Machine Learning (ICML) (pp. 681-688).
Montreal, Quebec.

MacKay, D. J. C. (1992). The Evidence Framework Ap-
plied to Classification Networks. Neural Computation,
4, 720-736.

Nocedal, J., & Wright, S. (1999). Numerical Optimization.
Springer.

Roweis, S. (1998). EM Algorithms for PCA and SPCA.
In M. I. Jordan, M. J. Kearns and S. A. Solla (Eds.),
Advances in Neural Information Processing Systems 10,
626-632. Cambridge, MA: MIT Press.

Sonnenburg, S., Franc, V., Yom-Tov, E., & Sebag, M.
(2008). PASCAL Large Scale Learning Challenge.
http://largescale.first.fraunhofer.de /workshop/.

Spiegelhalter, D. J., & Lauritzen, S. L. (1990). Sequen-
tial Updating of Conditional Probabilities on Directed
Graphical Structures. Networks, 20, 579-605.

Wu, G., Chang, E., Chen, Y.-K., & Hughes, C. (2006). In-
cremental Approximate Matrix Factorization for Speed-
ing up Support Vector Machines. Proceedings of the
ACM SIGKDD, International Conference on Knowledge
Discovery and Data Mining (KDD). Philadelphia, PA.



