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Abstract

Tor is one of the most widely-used privacy enhancing
technologies for achieving online anonymity and resist-
ing censorship. Simultaneously, Tor is also an evolving
research network on which investigators perform experi-
ments to improve the network’s resilience to attacks and
enhance its performance. Existing methods for study-
ing Tor have included analytical modeling, simulations,
small-scale network emulations, small-scale PlanetLab
deployments, and measurement and analysis of the live
Tor network. Despite the growing body of work con-
cerning Tor, there is no widely accepted methodology for
conducting Tor research in a manner that preserves real-
ism while protecting live users’ privacy. In an effort to
propose a standard, rigorous experimental framework for
conducting Tor research in a way that ensures safety and
realism, we present the design of ExperimenTor, a large-
scale Tor network emulation toolkit and testbed. We also
report our early experiences with prototype testbeds cur-
rently deployed at four research institutions.

1 Introduction

Tor [13] is one of the most widely-used privacy enhanc-
ing technologies for achieving online anonymity and
resisting censorship, with an estimated 250,000 daily
users [20] and over 2,500 volunteer-operated Tor routers.
Ordinary Internet users from around the world use Tor to
enhance the privacy of their web browsing, e-mail, in-
stant messaging, and file sharing. Users who reside in
jurisdictions that enforce censorship policies also use Tor
to enable free and open web browsing and online speech.
Despite its popularity, Tor is still an evolving research

network on which researchers work to harden Tor’s de-
sign against attacks on its anonymity [9, 10, 24] and im-
prove the network’s quality of service [29, 31, 35]. In
spite of this large and continually growing body of work,
there is no standard or widely accepted methodology for
conducting Tor research in a manner that is safe (e.g., re-
searchers do not risk jeopardizing live users’ privacy or

quality of service) and realistic, faithfully reproducing
the salient features of the Tor network in a way that en-
ables the results of non-live experiments to improve our
understanding of the live Tor network.

Prior Tor research has employed a variety of meth-
ods including analytical modeling [10, 24], simula-
tions [17, 24–26], small-scale network emulations [12],
small-scale PlanetLab deployments [9, 35], and live ex-
perimentation, measurement, and analysis of the real Tor
network [11, 18, 22, 23]. While each respective experi-
mental method offers its own advantages and drawbacks,
no approach offers a high degree of realism without ex-
perimenting with live users on the real Tor network.
However, experiments that involve real users might inad-
vertently cause harm to the users’ anonymity or degrade
their quality of service. Thus, in an effort to enable re-
alistic experiments without any potential for a negative
impact on live users, we present the design and our early
experiences with an isolated whole-network Tor emula-
tion toolkit and testbed.

Tor, like other large and complex distributed systems,
presents significant obstacles to accurate replication and
deployment in a testbed environment. First, it is neces-
sary to accurately model all relevant dynamics of the live
Tor network, including (but not limited to) the distribu-
tion of Tor router bandwidth, Tor router exit policies, and
Tor client behaviors and application traffic models. Also,
it is necessary to emulate the underlying network topol-
ogy and end-host and link properties in a manner that is
faithful to the live Tor network. Finally, it is essential
to have the ability to run both unmodified Tor code as
well as unmodified applications (e.g., web browsers and
peer-to-peer file sharing software) within the testbed.

To meet these challenges, we present ExperimenTor,
a large-scale Tor network emulation toolkit and testbed
that enables realistic experimentation by modeling the
distribution of Tor router bandwidth, client traffic loads
and applications, and other important aspects of the real
Tor network. In contrast to shared and relatively small
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Figure 1: The Tor network’s system architecture

network emulation platforms such as Emulab [2] or DE-
TER [1], ExperimenTor is built on top of the Model-
Net [36] network emulation platform and runs entirely
on inexpensive commodity hardware, can be scaled up
using a cluster of machines, and can be deployed at the
researcher’s local institution. Prototypes of the publicly-
available1 testbed are currently operational at four re-
search institutions and we detail our experiences using
the testbed for Tor research.
Contributions. In summary, this paper offers the fol-
lowing contributions to the science of cyber-security ex-
perimentation:

1. We offer a taxonomy of past experimental methods
used in Tor research. The sheer variety of past ap-
proaches highlights the lack of a standard best prac-
tice for conducting experimental Tor research.

2. We argue that whole-system Tor emulation offers
the greatest degree of realism without placing live
Tor users at risk to lost anonymity or degraded qual-
ity of service.

3. We present the design and implementation of Ex-
perimenTor, a network emulation-based toolkit and
testbed that enables realistic, scalable, and safe Tor
experiments. We also discuss our early experiences
and “lessons learned” through building Experimen-
Tor and using it for Tor research.

2 Tor Background

Tor is a network of volunteer-operated routers that en-
ables users to communicate privately in the presence of
eavesdroppers who have local (non-global) views of the
Internet [13].
To use the Tor network, clients tunnel TCP connec-

tions through bidirectional circuits that consist of a small
randomly selected subset of Tor routers. Typical circuits
consist of three routers: an entry guard, a middle router,

1Available at http://crysp.org/software/exptor

and an exit router (see Figure 1). Router discovery is ac-
complished by querying Tor directory servers that pub-
lish routers’ network addresses, public keys, and band-
width capacities. The termination point of a circuit – the
exit router – forwards TCP flows to/from their intended
destination using direct IP communication. Reply traffic
traverses circuits in the opposite direction.
Tor uses a layered encryption technique similar to

onion routing [34] to thwart traffic analysis. The initia-
tor of communication establishes session keys with each
router in its chosen circuit through a telescoping tech-
nique: the guard router’s session key is derived via au-
thenticated Diffie-Hellman; session keys for the middle
and exit routers are established by tunneling the authenti-
cated Diffie-Hellman through the preceding hops, effec-
tively increasing the length of the circuit one router at a
time. Once session keys are established, data are multi-
ply encrypted with the session keys, allowing each router
to “peel back” its encryption and forward the result to the
subsequent hop. Tor routers handle reply traffic in the
opposite manner – data are encrypted at each step until
reaching the client.
The application of layered encryption exposes only the

identities of the previous and next routers at each hop
along the circuit. Since the entry guard communicates
directly with the client, it trivially learns the client’s net-
work address; similarly, the exit router learns the identity
of the receiver. In principle, the guard and exit routers
cannot determine that they belong to the same circuit.2

Importantly, an adversary who intercepts communication
along the circuit discovers only the endpoints of the mon-
itored link(s); the identities of the communicants are pro-
tected through the layered encryption.
Tor is primarily intended to provide privacy by hiding

senders’ network addresses. However, the system is also
a fully featured overlay routing system, supporting con-
gestion control, rate limiting, and multiplexing of circuits
across common routers. It is highly configurable, en-
abling users to specify average bandwidth rates, the fre-
quency of directory fetches, policies for including or ex-
cluding specific routers in circuits, the duration of anony-
mous circuits, among many other options. As Tor’s us-
age has increased, so has its features and complexities.

3 Prior Methods for Tor Experimentation

The Tor network has grown in popularity from the pub-
lication of its design in 2004 [13], in part, due to a close
collaboration with the research community. Since 2004,
researchers have studied Tor’s security, anonymity, and
performance in an effort to understand the network’s re-
silience to various attacks, propose mitigation strategies
for attacks, and improve Tor’s performance to make the

2However, timing-based attacks demonstrate that colluding entry
and exit nodes can perform such linkage with high probability [19].

http://crysp.org/software/exptor


system attractive to more users. Tor’s status today as
the defacto standard technique to achieve anonymous
communications and resist censorship on the Internet
has been largely influenced by the role that researchers
have played in proposing and evaluating improvements
to Tor’s design and implementation.

Despite Tor’s successful collaboration with the re-
search community, there is no standard and accepted
methodology for conducting Tor research in a manner
that ensures the safety of real Tor users and also achieves
a high degree of realism. Prior Tor research has used a
wide variety of experimental techniques, ranging from
abstract analytical modeling of specific details of Tor’s
design to launching potentially dangerous attacks on
the live Tor network with a possibility of harming the
anonymity or quality of service of live users.

In the remainder of this section, we present an
overview of the various experimental methods used in
past Tor research, highlighting the advantages and draw-
backs of each respective approach and, ultimately, con-
cluding that a fresh approach is needed to standardize Tor
experimentation. Note that our objective in this section
is not to be critical of prior work, but instead to evaluate
the current state-of-the-art of Tor experimentation.

Analytical modeling. To understand how attacks on re-
liability can be used to facilitate the de-anonymization
of Tor users, Borisov et al. [10] abstractly model Tor’s
router selection process and estimate the expected likeli-
hood of an adversary controlling Tor circuits’ entry and
exit positions through denial-of-service attacks against
non-compromised circuits. While their analysis offers
valuable insights about this attack in the abstract, their
analytical model assumes that clients choose Tor routers
by uniform selection. However, Tor clients weigh router
selection by bandwidth, and thus, it is unclear whether
the attack’s precise behavior as observed by Borisov et

al. would hold on the live Tor network. An empiri-
cal analysis of denial-of-service attacks on the live net-
work may be ill-advised, as it might harm real users’
anonymity or quality of service; we note that such a study
could be safely conducted in a testbed environment.

Murdoch and Watson [24] study the impact of differ-
ent router selection algorithms on users’ security and per-
formance. To determine users’ expected waiting time to
complete a request, the authors apply queuing theory to
model a Tor router as an M/D/1 queue with a Poisson in-
put process. These assumptions may have some degree
of fidelity to the live network; however, it has been pre-
viously shown that Poisson processes do not accurately
model real Internet traffic [27]. In Murdoch and Wat-
son’s work, the use of an analytic model was likely mo-
tivated by its ability to evaluate a global change to Tor’s
design (e.g., a network-wide adoption of a new router se-
lection algorithm). In contrast, simply modifying a small

fraction of Tor clients on the live network might provide
an incomplete and potentially misleading analysis. In
general, to properly study the effects of protocol changes
at scale, it is necessary to deploy an entire network of
routers with the modifications. Thus, a large-scale Tor
emulation platform fuelled by empirically-derived traffic
models would be an ideal tool for this type of experiment.

Simulations. Murdoch and Watson [24] also simu-

late router selection algorithms to study the effect of
the router selection strategy on an adversary’s ability to
compromise circuits and de-anonymize Tor clients. Tor’s
router selection algorithm is highly complex and difficult
to abstractly model, thus, it is necessary to implement the
selection mechanism in simulation and observe circuit
compromise rates. We note that the simulator used data
from Tor’s directory servers to model Tor routers. Alter-
natively, this type of analysis could be done with emu-
lated Tor clients running the real Tor code in a testbed
environment.

In addition, parts of Tor’s design and operation have
been implemented as discrete-event simulators. Using
the Scalable Simulation Framework [6], O’Gorman and
Blott [26] develop a discrete-event Tor simulator capa-
ble of simulating a Tor network with up to 4,500 web
clients, 100 web servers, and over 950 Tor routers. Their
work represents an ambitious effort to simulate the Tor
network at scale. Their implementation simulates Tor’s
circuit establishment process, Tor’s fixed-size 512-byte
cells, and Tor’s multiplexing of several streams over indi-
vidual circuits. Jansen et al. [17] build a custom discrete-
event Tor simulator that includes circuit establishment
and realistic empirical traffic models to simulate web
browsing and file sharing clients. Their simulator is
well-suited for evaluating multiple Tor queuing models
as well as examining the effects of network growth on
bandwidth performance. However, experience with the
Java-based simulator indicates it does not scale beyond
50 Tor routers, 1,500 web clients, and 50 file sharers.
Ngan et al. [25] implement a packet-level discrete-event
Tor simulator that is capable of simulating on a commod-
ity machine a Tor network with traffic generated by 20
BitTorrent clients and 2,000 web clients. However, the
simulator’s source code is not publicly available.

PlanetLab deployments. In general, a significant short-
coming of PlanetLab as an experimental platform is that
results are often not reproducible [28]. Nonetheless,
many researchers have utilized PlanetLab to study Tor.

In order to study the influence of Tor’s bandwidth-
weighted router selection algorithm on an adversary’s
ability to compromise Tor circuits, Bauer et al. deployed
small Tor networks on PlanetLab [9]. Two sets of experi-
ments were conducted with 40 Tor routers and 60 clients,
and with 60 Tor routers and 90 clients. However, in order
to accurately model the live Tor network’s router band-



width distribution, it is necessary to exhaustively search
for individual PlanetLab nodes with specific bandwidth
properties – a challenging task since PlanetLab nodes are
shared among many researchers and each node’s avail-
able bandwidth may vary over time. Also, due to Plan-
etLab’s limited resources, the experimental Tor networks
were much smaller than the live Tor network, in terms of
the number of Tor client and router nodes and the net-
work’s aggregate bandwidth.

Tang and Goldberg [35] seek to improve performance
by replacing Tor’s round-robin circuit scheduling algo-
rithm with a prioritization scheme that services web
clients’ traffic ahead of bulk clients’ downloads. As a
component of a larger evaluation, the authors present
results from a PlanetLab deployment with three Tor
routers, three Tor clients, and a single web server. A
small-scale evaluation on PlanetLab enabled the authors
to study the whole-network effects of their proposed im-
provements. However, with a large-scale testbed such as
ExperimenTor, it would also be possible to scale this ex-
periment beyond only a few nodes and perform a whole-
network evaluation at scale.

Small-scale emulations. Chakravarty et al. [12] pro-
pose a traffic analysis attack on Tor that uses available
bandwidth estimation techniques to identify a Tor client
and their chosen circuit. In this attack, it is essential to
accurately model real network dynamics such as band-
width and delays. To demonstrate and evaluate the pro-
posed attack, the authors conduct small-scale experi-
ments on DETER with roughly one dozen end-hosts act-
ing as either Tor clients or Tor routers. While such a
small experiment is sufficient for a proof-of-concept to
demonstrate the attack, in order to provide a deeper un-
derstanding of how the attack works in practice, it may
be necessary to scale the experiment beyond what is cur-
rently feasible with DETER.

Live experiments. Many prior Tor studies have
performed experiments, measurements, or analy-
sis that in some way involved the live Tor net-
work [11, 16, 18, 22, 23, 31, 35]. Studies that directly
observe or analyze the live Tor network have the ability
to offer great insight into real Tor behavior; however, we
observe that many of these prior studies involving the
live Tor network suffer from certain limitations and even
potential hazards.

To illustrate one common limitation of live Tor ex-
perimentation, consider the following experiments. To
give Tor users the ability to better manage the security
and performance trade-offs that result from Tor clients’
router selection strategy, Snader and Borisov [31] pro-
posed a tunable router selection algorithm that allows
users to tune the degree to which they weigh router se-
lection toward high bandwidth routers. To evaluate this
approach, the authors deploy a single Tor client that uses

the tunable router selection strategy and report on their
client’s security and performance over the course of sev-
eral months of participation in the Tor network. While
these experiments offer valuable insight into the pro-
posed selection technique, they do not analyze the be-
havior of the proposed algorithm when many or all Tor
clients use various configurations of tunable selection.

Similarly, Tang and Goldberg [35] evaluate their pro-
posed circuit scheduling algorithm by deploying a sin-
gle modified Tor router on the live Tor network, where
all other Tor routers are unmodified. The authors ob-
serve that their proposed circuit scheduling algorithm of-
fers noticeable improvements in download time relative
to Tor’s default algorithm when Tor clients use circuits
with their modified Tor router as a middle node and un-
modified routers as their entry guards and exit routers.
However, from the experiments presented, it is not clear
how much improvement might be possible if the whole
Tor network used their proposed scheduling algorithm.

These examples highlight one inherent limitation of
live Tor experiments: Evaluating small-scale modifica-

tions to a few Tor clients or Tor routers may not provide

much information about how the modifications scale to

the Tor network as a whole.

Another potential limitation of live experimentation
involves the possible risks to real users’ anonymity or
quality of service. Many recent studies have captured
live Tor traffic in an effort to understand how Tor is
used in practice [11, 22, 23], while other studies have
launched large-scale de-anonymization attacks on real
Tor users [18]. In response to this body of work, a debate
within the research community has begun that is focused
on establishing acceptable community standards and best
practices for conducting such Tor studies in an ethical
and legal manner [32], culminating in the development
of the Tor Metrics Portal [7], a community-driven, pub-
lic repository for aggregated, statistical Tor data [21].

These issues illustrate a potential hazard in live Tor
experimentation: In the absence of clearly articulated

community standards and accepted norms for conduct-

ing such research, live Tor experimentation may raise

ethical or legal concerns.

A case for a whole-Tor network testbed. In sum-
mary, there has been a wide diversity of experimental ap-
proaches used in past Tor research, each having its own
set of advantages and potential drawbacks. In an effort to
(i) offer realism and fidelity to the dynamics of the live
Tor network and (ii) provide the ability to make global
changes to Tor clients or Tor routers without incurring
any risk to live Tor users, we propose ExperimenTor,
a whole-Tor network emulation-based testbed environ-
ment. In the next section, we outline the specifics of
the proposed testbed and its accompanying toolkit, and



describe how they may be used to efficiently configure,
run, and analyze Tor experiments.

4 Experimentation with ExperimenTor

In order to perform large-scale experiments with the Tor
network in a manner that ensures safety to real Tor users
while not sacrificing much realism, we present the de-
sign and implementation of ExperimenTor, a network
emulation-based Tor testbed and accompanying experi-
ment toolkit. In this section, we describe the challenges
that are involved in replicating the salient features of the
Tor network in an isolated testbed environment, present
the high-level design of ExperimenTor, and detail Exper-
imenTor’s implementation.

4.1 Challenges of Building a Tor Testbed

There have been many different approaches toward the
goal of faithful Tor experimentation (see Section 3). Of
the techniques that we surveyed, no prior work has uti-
lized a large-scale Tor testbed for experimentation. This
is because there are many significant challenges involved
in the design and implementation of a large-scale Tor net-
work testbed. We next enumerate and describe the most
significant challenges.
Modeling the live Tor network is difficult. To con-
struct a testbed that is faithful to the live Tor network,
it is essential to accurately model the distribution of Tor
router bandwidth. Since the Tor network is composed
of volunteer-operated Tor routers, there is great diver-
sity in the amount of bandwidth that each respective Tor
router has available to devote to relaying traffic. If the
distribution of bandwidth is not accurately modelled in
the testbed, the results of experiments may not be useful
or generalizable to the real Tor network. Similarly, it is
necessary to accurately model the distribution of band-
width that is available for entry guard, middle node, and
exit node routers. For exit routers, it is also necessary
to model the exit routers’ various exit policies, which in-
dicate the destination IP addresses and ports with which
the exit router is willing to communicate.
In addition to accurate Tor router models, it is also

necessary to accurately model Tor clients. Such mod-
els should accurately describe the number of Tor clients
and their exit traffic in terms of the distribution of appli-
cations, number of connections, and traffic volume.
Need large-scale network emulation. In addition to
faithfully modeling the dynamics of real Tor clients and
Tor routers, it is necessary to accurately model the un-
derlying network. Network emulation platforms such as
Emulab [2] or DETER [1] have been built for this precise
purpose; however, these emulation testbeds have limi-
tations. First, both Emulab and DETER have limited
computing and networking resources, which restricts the
scale of experiments that can be run on these testbeds. In
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Figure 2: ExperimenTor system architecture

addition, both testbeds are shared resources, which intro-
duces contention among researchers for experiment time.
Should run native Tor and application code. Prior
approaches to Tor experimentation have relied on sim-
ulation of various aspects of Tor’s design. However,
rather than re-implementing specific components of Tor,
we wish to run the unmodified and complete Tor code in
order to provide a higher degree of realism. In addition,
running the real Tor code also reduces the likelihood of
introducing (re-)implementation errors that might influ-
ence an experiment’s results. It is also sometimes neces-
sary to conduct experiments using real applications (e.g.,
web browsers and e-mail clients). Emulators should sup-
port the same SOCKS interface that enables Tor users to
connect their applications to the Tor network.
Some network simulators such as ns2 [5] provide em-

ulation modes that support access to a live network; how-
ever, the inability to execute native applications makes
them unsuitable for experimentation with Tor.

4.2 Meeting the Design Challenges

We next describe the details of ExperimenTor and, in
particular, how our design overcomes the challenges of
large-scale network emulation and accurate modeling of
Tor routers, clients, and typical applications.
Large-scale network emulation with ModelNet. To
enable large-scale network emulation on commodity
hardware and operating systems, we build Experimen-
Tor on top of the ModelNet [36] network emulation plat-
form. ModelNet allows the experimenter to build net-
work topologies using standard network topology gener-
ation tools such as inet [3] and assign realistic band-
width, latency, queue length, and other properties to
links. Network emulation is performed by forwarding
real application traffic through one or more emulatorma-
chines, which are responsible for emulating the speci-
fied network using a specialized kernel module. Applica-
tions run without modification3 on edge nodes scattered

3Users set the LD_PRELOAD environment variable to enable appli-
cations to use ModelNet. The applications are unaware of ModelNet.



throughout the virtual network topology, but these appli-
cations are physically executed on commodity machines
connected over a local area network to the emulator ma-
chine(s). More specifically, each virtual end-host is as-
signed its own virtual network interface in the 10.0.0.0/8
address space on one of the commodity machines con-
nected to the emulator. An example ExperimenTor con-
figuration is shown in Figure 2.

The main advantage of leveraging ModelNet in the de-
sign of ExperimenTor is that it allows the testbed to run
native, unmodified Tor code with typical applications. In
addition, ModelNet can be scaled to support more end-
hosts than is currently possible with shared emulation
platforms such as Emulab or DETER. Finally, because
ModelNet runs on commodity hardware and operating
systems, researchers can deploy their own private Exper-
imenTor testbed at low cost within their labs.

Modeling Tor routers using directory data. As de-
scribed in Section 2, Tor uses a set of trusted directory
authorities to distribute information about Tor routers.
These directory authorities sign and publish information
needed to reach Tor routers such as their IP addresses, lis-
tening ports, and public keys, and additionally advertise
a significant amount of metadata about each Tor router.
For instance, Tor clients can learn each router’s sustained
bandwidth capacity over the course of its operation, its
status as an entry guard, and its exit policy.

Since this directory information is made publicly
available through a standard HTTP interface, it is pos-
sible to fetch all Tor router metadata and effectively
replicate the state of the Tor network by configuring
Tor routers with the same distribution of entry guards,
middle-only routers, and exit routers both by number of
nodes and by bandwidth. In addition to replicating the
state of the live Tor network, an experimenter might also
use the directory information to scale the network size
up or down in terms of number of Tor routers and aggre-
gate Tor network bandwidth, while preserving the cor-
rect proportions of guard, middle-only, and exit nodes
and bandwidths.

Modeling Tor clients and their traffic. Accurately
modeling Tor clients is important for replicating the dy-
namics of real Tor network in a testbed. Such modeling
presents a challenge, as little empirical data is available
about the precise number of Tor clients and their behav-
iors. However, we can leverage publicly-available data
sets on the estimated number of live Tor clients over time
from the Tor Metrics Portal [7] and observations about
the characteristics of live Tor clients’ traffic obtained by
McCoy et al., who analyzed a live Tor exit router’s traf-
fic [22]. They observe that 92% of exit TCP connections
are HTTP connections making up 57% of Tor’s exit traf-
fic volume, and 3% of exit connections come from Bit-
Torrent file sharing and comprise 40% of Tor’s exit traffic

volume. Of the HTTP traffic, the vast majority appears
to result from interactive web browsing, with only 3.5%
of connections transporting over 1MiB. These empiri-
cal observations can be used to model the distribution of
client traffic in the testbed by connection and volume.
In addition, to model interactive web traffic, data

sets [15] consisting of web request and response sizes,
the number of web objects per page, and the time be-
tween a client’s successive web requests can be leveraged
to enhance the realism of the emulated clients. For maxi-
mum realism, live network traces can be used to generate
emulated traffic that is faithful to the user, application,
and network behaviors captured in the traces [33, 37].

4.3 ExperimenTor Details

We have built and deployed ExperimenTor prototypes
at four research institutions in the United States and
Canada. Our initial prototypes are relatively simple in
their construction, consisting of a single FreeBSD 6.3
machine with the ModelNet emulator kernel module and
a single “edge node” machine running Linux 2.6.32 for
the Tor routers, clients, and application processes within
the emulated topology.
In addition to the generalized ExperimenTor sys-

tem architecture, we developed an extensive, publicly-
available toolkit for configuring, running, and analyzing
ExperimenTor experiments. We next describe the toolkit.
Generating realistic topologies. The first step before
running experiments in the testbed is to generate a net-
work topology and deploy it on the ModelNet emulator.
To accurately model the real Tor network’s distribution
of router bandwidth, the configuration tool first obtains
the router information from a Tor directory server and
extracts each router’s estimated sustained bandwidth ca-
pacity. Next, it maps each router to an end-host located
within the virtual topology and assigns it a real band-
width value. Finally, the toolkit assigns realistic network
latencies to each end-host. Currently, the toolkit extends
ModelNet’s topology generation tools to map measured
latencies from the King data set [14] onto the topology.
Configuring Tor routers and directories. After the
topology has been created, it is necessary to deploy the
Tor routers. The first step is to create directory servers
for the testbed Tor deployment, which is accomplished
by simply generating public/private key pairs for each
directory server to be used in the testbed (five directories
are sufficient to distribute the traffic load of Tor client
requests). To ensure that all emulated Tor clients and
routers use the testbed’s directories instead of the real
directories, it is necessary to record each testbed direc-
tory’s public key fingerprint and distribute these to the
Tor routers and clients in the testbed. Also, similar to
how bandwidths from Tor routers are assigned to Tor
routers in the testbed, entry guard status and exit poli-



cies may also be assigned in the same way. Each router,
after being configured, joins the Tor network testbed.
Configuring Tor clients and applications. Our tools
also automatically configure a desired number of Tor
clients and their applications. Our initial prototype sup-
ports HTTP clients that fetch web objects of various
sizes, to approximate either interactive web users who
engage in web surfing or bulk downloaders. It is also
possible to configure the testbed to support more com-
plex traffic generation, for example, using one of the
models discussed in Section 4.2. To help generate HTTP
traffic, the testbed runs a lightweight multi-threaded web
server (lighttpd [4]) to serve web objects to clients.
In addition, BitTorrent file shares may be configured and
a desired fraction of clients can run BitTorrent-over-Tor.
Running and analyzing experiments. The Experimen-
Tor toolkit contains routines for configuring the network
topology, directory servers, Tor routers, and Tor clients.
Additionally, the toolkit also manages the execution of
experiments: a single master script creates an instance
of the testbed, runs the experiments, stops them after a
specified amount of time, and collects data that were gen-
erated during the course of the experiment. Additionally,
the toolkit provides scripts for synthesizing and analyz-
ing the collected results (for example, to plot throughput
and latency).

5 Lessons Learned

We next describe our early experiences with Experimen-
Tor and discuss the limitations of Tor emulation.

5.1 Initial Experience with ExperimenTor

Evaluating design changes. We have applied Experi-
menTor to evaluate the effects of performing link-based

router selection [30] in Tor. Such an evaluation would
be difficult to perform either through analysis or sim-
ulation. The choice of routers affects network conges-
tion, packet/cell arrival rates, and network-, OS- and
application-layer queuing delays. Developing an ana-
lytical model that considers anticipated as well as un-

foreseen effects at the network and application layers is
likely intractable; we know of no simulators that support
this complexity.
A more practical approach is to experiment with the

actual Tor code base. Testing alternative router selection
policies using the deployed Tor network produces (by
definition) accurate results, but is limited to the study of
small-scale adoptions. That is, it measures the effects of
only the experimental (altered) Tor nodes on the network.
ExperimenTor offers more flexibility by enabling us to
investigate the effects of various adoption rates (up to
100%) on Tor. ExperimenTor has supported our ongoing
research by allowing us to efficiently “deploy” our router
selection techniques and measure their performance in
many client and network configurations.

Diagnosing performance problems in Tor. In addi-
tion to evaluating changes to aspects of Tor’s design, we
have also used the testbed to help diagnose and fix per-
formance problems in Tor [8]. From experiments run
on the testbed, we observed that Tor handles congestion
poorly and uses an end-to-end window-based flow con-
trol scheme that offers suboptimal flow control; both is-
sues result in unnecessarily high delays for end-users.
To improve Tor’s performance, we developed and

evaluated new congestion control and flow control strate-
gies, using ExperimenTor to analyze the proposals with
whole-Tor network experiments that realistically model
the distribution of Tor router bandwidth and client traffic.
These experiments led us to conclude that the proposed
improvements likely would offer similar improvements
when deployed at-scale on the live Tor network.

5.2 Limitations

As with any emulator, ExperimenTor cannot perfectly
represent all characteristics of the deployed Tor network.
Although ExperimenTor does not impose any fixed scal-
ability limitations, the emulated network is effectively
restricted by its available computational and network re-
sources. Since ExperimenTor supports multiple “edge
node” machines, constructing large topologies is not dif-
ficult. However, the size of the emulation is effectively
bound by the network capacity of the ModelNet instance.
In our experimentation, we have successfully scaled Ex-
perimenTor to 1,000 Tor nodes using one “edge node”
machine and one ModelNet emulator machine connected
by a 1Gbps switch.
Since ExperimenTor cannot emulate Tor’s (estimated)

250,000 daily users [20], experiments must down-sample
their behavior from the deployed Tor network. In gen-
eral, it is unclear how to best “scale down” traffic char-
acteristics to an emulated environment. Although intu-
itive approaches such as dividing the usage observed on
the real Tor network by the emulation’s scaling factor
provide some level of realism, the decrease in absolute
traffic volume has sometimes subtle consequences to per-
formance (for example, by incurring shorter application-
layer queueing delays at Tor routers). Techniques for
best capturing “realism” in emulation environments re-
mains an open challenge.
Additionally, how well ExperimenTor reflects the ac-

tual Tor network is dependent on the investigators’ abil-
ity to accurately represent the configurations of real
Tor users. Although ExperimenTor runs unmodified in-
stances of Tor, correctly emulating the diverse versions
and configurations of Tor users – proportionately to those
employed in the real network – is another challenge.
Finally, due to its reliance on synthetic behavior, Ex-

perimenTor is ill-suited for measurement studies of traf-
fic characteristics or real-world Tor usage.



6 Conclusion and Future Work

ExperimenTor is a valuable testbed and toolkit for un-
derstanding Tor’s security and performance, as well
as evaluating changes to Tor’s design. It allows re-
searchers to perform large-scale experiments that faith-
fully reproduce many of the important features of the
Tor network, including Tor client traffic generation and
Tor router topologies, on a dedicated testbed that re-
quires minimal hardware. With ExperimenTor, re-
searchers can adjust client and router behaviors along
with network configurations to directly observe the ef-
fects of adoption rates up to 100% on Tor. Experi-
menTor is currently being used to support ongoing re-
search at four institutions and has been released to
the community as open source software (available at
http://crysp.org/software/exptor).

To date, ExperimenTor prototypes have been built and
tested with a single ModelNet emulator. We are ex-
tending the prototypes to multiple emulators to realize
testbeds that scale to the size of the current Tor network
and beyond. We are also working on improving traffic
generation tools that will enable investigators to config-
ure proportions of traffic in an intuitive and standardized
format. Finally, while we recognize that there are limi-
tations, we argue that ExperimenTor is an efficient, cost-
effective, safe, and realistic testbed for studying Tor.
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KOSTIĆ, D., CHASE, J., AND BECKER, D. Scalability and ac-
curacy in a large-scale network emulator. In OSDI (2002).

[37] VISHWANATH, K. V., AND VAHDAT, A. Realistic and respon-
sive network traffic generation. In SIGCOMM (2006).

http://crysp.org/software/exptor
http://www.isi.edu/deter
http://www.emulab.net
http://topology.eecs.umich.edu/inet
http://www.lighttpd.net
http://www.isi.edu/nsnam/ns
http://www.ssfnet.org/homePage.html
https://metrics.torproject.org

	1 Introduction
	2 Tor Background
	3 Prior Methods for Tor Experimentation
	4 Experimentation with ExperimenTor
	4.1 Challenges of Building a Tor Testbed
	4.2 Meeting the Design Challenges
	4.3 ExperimenTor Details

	5 Lessons Learned
	5.1 Initial Experience with ExperimenTor
	5.2 Limitations

	6 Conclusion and Future Work

