
An extended abstract of this paper appears in Fast Software Encryption, FSE 2004, Lecture Notes
in Computer Science, W. Meier and B. Roy editors, Springer-Verlag, 2004. This is the full version.

New Security Proofs for the 3GPP Confidentiality and

Integrity Algorithms

Tetsu Iwata∗ Tadayoshi Kohno†

January 26, 2004

Abstract

This paper analyses the 3GPP confidentiality and integrity schemes adopted by Universal
Mobile Telecommunication System, an emerging standard for third generation wireless commu-
nications. The schemes, known as f8 and f9, are based on the block cipher KASUMI. Although
previous works claim security proofs for f8 and f9′, where f9′ is a generalized versions of f9,
it was recently shown that these proofs are incorrect. Moreover, Iwata and Kurosawa (2003)
showed that it is impossible to prove f8 and f9′ secure under the standard PRP assumption
on the underlying block cipher. We address this issue here, showing that it is possible to prove
f8′ and f9′ secure if we make the assumption that the underlying block cipher is a secure
PRP-RKA against a certain class of related-key attacks; here f8′ is a generalized version of f8.
Our results clarify the assumptions necessary in order for f8 and f9 to be secure and, since no
related-key attacks are known against the full eight rounds of KASUMI, lead us to believe that
the confidentiality and integrity mechanisms used in real 3GPP applications are secure.

Keywords: Modes of operation, PRP-RKA, f8, f9, KASUMI, security proofs.

∗Dept. of Computer and Information Sciences, Ibaraki University, 4–12–1 Nakanarusawa, Hitachi, Ibaraki 316-
8511, Japan. E-mail: iwata@cis.ibaraki.ac.jp. URL: http://crypt.cis.ibaraki.ac.jp/.

†Dept. of Computer Science and Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla,
California 92093, USA. E-mail: tkohno@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/tkohno. Supported
by a National Defense Science and Engineering Graduate Fellowship.

Contents

1 Introduction 1

2 Preliminaries 2

3 Specifications of f8, f8′, f9 and f9′ 3
3.1 3GPP Confidentiality Algorithm f8 [1] . 3
3.2 A Generalized Version of f8: f8′ . 4
3.3 3GPP Integrity Algorithm f9 [1] . 4
3.4 A Generalized Version of f9: f9′ [12, 19, 15] . 5

4 Security of f8′ 6

5 Security of f9′ 9

References 12

A Proof of Lemma 4.1 13
A.1 Discussion of the Previous Work [18] . 16

B Proof of Lemma 5.1 17
B.1 Discussion of the Previous Work [12] . 21

1 Introduction

Background. Within the security architecture of the 3rd Generation Partnership Project (3GPP)
system there are two standardized constructions: A confidentiality scheme f8, and an integrity
scheme f9 [1]. 3GPP is the body standardizing the next generation of mobile telephony. Both
f8 and f9 are modes of operations based on the block cipher KASUMI [2]. f8 is a symmetric
encryption scheme which is a variant of the Output Feedback (OFB) mode with full feedback, and
f9 is a Message Authentication Code (MAC) which is a variant of the CBC MAC.

Provable Security. Provable security is a standard security goal for block cipher modes of op-
erations. Indeed, many of the block cipher modes of operations are provably secure assuming
that the underlying block cipher is a secure pseudorandom permutation, or a super-pseudorandom
permutation [21]. For example, we have: CTR mode [3] and CBC encryption mode [3] for symmet-
ric encryption schemes, PMAC [8] and OMAC [14] for message authentication codes, and IAPM
[17], OCB mode [22], CCM mode [23, 16], EAX mode [6] and CWC mode [20] for authenticated
encryption schemes.

Therefore, it is natural to ask whether f8 and f9 are provably secure if the underlying block
cipher is a secure pseudorandom permutation. Making this assumption, it was claimed that f8
is a secure symmetric encryption scheme in the sense of left-or-right indistinguishability [18] and
that f9′ is a secure MAC [12], where f9′ is a generalized version of f9. However, these claims were
disproven [15]. One of the remarkable aspects of f8 and f9 is the use of a non-zero constant called
a “key modifier,” or KM. In the f8 and f9 schemes, KASUMI is keyed with K and K ⊕ KM.
The paper [15] constructs a secure pseudorandom permutation F with the following property: For
any key K, the encryption function with key K is the decryption function with K ⊕KM. That is,
FK(·) = F−1

K⊕KM(·). Then it was shown that f8 and f9′ are insecure if F is used as the underlying
block cipher. This result shows that it is impossible to prove the security of f8 and f9′ even if the
underlying block cipher is a secure pseudorandom permutation.

Our Contribution. Given the results in [15], it is logical to ask if there are assumptions under
which f8 and f9 are actually secure and, if so, what those assumptions are. The answers to
these questions would give us greater insights into the security of these two modes. Because of
the constructions’ use of keys related by fixed xor differences, the natural conjecture is that if the
constructions are actually secure, then the minimum assumption on the block cipher must be that
the block cipher is secure against some class of xor-restricted related-key attacks, as introduced
in [7] and formalized in [5].

We prove that the above hypotheses are in fact correct and, in doing so, we clarify what assump-
tions are actually necessary in order for the f8 and f9 modes to be secure. In more detail, we first
consider a generalized version of f8, which we call f8′. f8′ is a nonce-based symmetric encryption
scheme, and is the natural nonce-based extension of the original f8. We then show that f8′ is a
secure nonce-based deterministic symmetric encryption mode in the sense of indistinguishability
from random strings if the underlying block cipher is secure against related-key attacks in which
an adversary is able to obtain chosen-plaintext samples of the underlying block cipher using two
keys related by a fixed known xor difference.

We next consider a generalized version of f9, which we call f9′. f9′ is a deterministic MAC,
and is a natural extension of f9 that gives the user, or adversary, more liberty in controlling the
input to the underlying CBC MAC core. We then show that f9′ is a secure pseudorandom function,
which provably implies a secure MAC, if the underlying block cipher resists related-key attacks in

1

which an adversary is able to obtain chosen-plaintext samples of the underlying block cipher using
two keys related by a fixed known xor difference.

Since both f8′ and f9′ are generalized versions of f8 and f9, and, since the best known related-
key attack against KASUMI breaks only six out of eight rounds [9], our results show that unless a
novel new attack is discovered against KASUMI, the 3GPP confidentiality and integrity mechanisms
are actually secure. We view this as an important practical corollary of our research since the 3GPP
constructions are destined for use in future mobile telephony applications. Additionally, because
our proofs explicitly quantify what properties of the underlying block cipher are necessary in order
for f8′ and f9′ to be secure, our results can help others decide whether it is safe to instantiate
the generalized 3GPP modes with block ciphers other than KASUMI. Of course, because the
assumptions we make are stronger than the standard pseudorandomness assumptions, as proven
necessary in [15], unless there is a significant reason to do otherwise, we suggest that future systems
use more conventional modes such as CTR mode and OMAC.

For our proofs, rather than trying to find and re-use correct portions of the analyses in [18]
and [12], we chose instead to prove the security of f8′ and f9′ directly. We did this in order to
ensure the correctness of our results and to avoid presenting proofs covered with patches. We
discuss some of problems with the previous analyses in more detail in Appendices A.1 and B.1.

An extended abstract of this paper appeared in [13].

Related Works. Initial security evaluation of KASUMI, f8 and f9 can be found in [11]. Knudsen
and Mitchell analyzed the security of f9′ against forgery and key recovery attacks [19].

2 Preliminaries

Notation. If x is a string then |x| denotes its length in bits. If x and y are two equal-length strings,
then x⊕ y denotes the xor of x and y. If x and y are strings, then x‖y denotes their concatenation.
Let x ← y denote the assignment of y to x. If X is a set, let x

R← X denote the process of uniformly
selecting at random an element from X and assigning it to x. If F : {0, 1}k×{0, 1}n → {0, 1}m is a
family of functions from {0, 1}n to {0, 1}m indexed by keys {0, 1}k, then we use the notation FK(D)
as shorthand for F (K, D). We say F is a family of permutations, i.e., a block cipher, if n = m
and FK(·) is a permutation on {0, 1}n for each K ∈ {0, 1}k. Let Rand(n, m) denote the set of all
functions from {0, 1}n to {0, 1}m. When we refer to the time of an algorithm or experiment in the
provable security sections of this paper, we include the size of the code (in some fixed encoding).
There is also an implicit big-O surrounding all such time references.

PRP-RKAs. The PRP-RKA notion was introduced in [5], and is based on the pseudorandomness
notions introduced in [21] and later made concrete in [4]. The notion was designed to model block
ciphers secure against related-key attacks [7].

Let Perm(k, n) denote the set of all block ciphers with domain {0, 1}n and keys {0, 1}k. The
notation G

R← Perm(k, n) thus corresponds to selecting a random block-cipher, and comes down to
defining G via

For each K ∈ {0, 1}k do: GK
R← Perm(n) ,

where Perm(n) is the set of all permutations on {0, 1}n.
Given a family of functions F : {0, 1}k×{0, 1}n → {0, 1}n and a key K ∈ {0, 1}k, we define the

related-key oracle Frk(·,K)(·) as an oracle that takes two arguments, a function φ : {0, 1}k → {0, 1}k

2

and an element M ∈ {0, 1}n, and that returns Fφ(K)(M), or the encipherment of M under the key
φ(K). In this context, we shall refer to φ as a related-key-deriving (RKD) function.

The PRP-RKA notion, which we now describe, is parameterized by a set of RKD functions Φ.
Let E : {0, 1}k × {0, 1}n → {0, 1}n be a family of functions and let Φ be a set of RKD functions
over {0, 1}k. Let A be an adversary with access to a related-key oracle, and restricted to queries
of the form (φ, x) in which φ ∈ Φ and x ∈ {0, 1}n, and let A return a bit. Then

Advprp-rka
Φ,E (A) def=

∣∣∣Pr(K R← {0, 1}k : AErk(·,K)(·) = 1)

−Pr(K R← {0, 1}k ; G
R← Perm(k, n) : AGrk(·,K)(·) = 1)

∣∣∣
is defined as the PRP-RKA-advantage of A in a Φ-restricted related-key attack (RKA) on E.
Intuitively, we say that E is a secure PRP-RKA under Φ-restricted related-key attacks if the PRP-
RKA-advantage of all adversaries using reasonable resources is small.

In this work we are primarily interested in keys that are related by some xor difference. For
any ∆ ∈ {0, 1}k we let XOR∆ : {0, 1}k → {0, 1}k denote the function which on input K ∈ {0, 1}k

returns K ⊕∆. We define Φ⊕k as Φ⊕k
def= {XOR∆ : ∆ ∈ {0, 1}k }. We briefly remark that modern

block ciphers, e.g., AES [10], are designed to be secure PRP-RKAs under Φ⊕k -restricted related-
key attacks. Additionally, the best-known Φ⊕k -restricted related-key attack against the block cipher
KASUMI, which was designed for use with the 3GPP modes, only breaks six out of eight rounds [9].

3 Specifications of f8, f8′, f9 and f9′

3.1 3GPP Confidentiality Algorithm f8 [1]

f8 is a symmetric encryption scheme standardized by 3GPP1. It uses a block cipher KASUMI :
{0, 1}128×{0, 1}64 → {0, 1}64 as the underlying primitive. The f8 key generation algorithm returns
a random 128-bit key K. The f8 encryption algorithm takes a 128-bit key K, a 32-bit counter
COUNT, a 5-bit radio bearer identifier BEARER, a 1-bit direction identifier DIRECTION, and
a message M ∈ {0, 1}∗ to return a ciphertext C, which is the same length as M . Also, it uses
a 128-bit constant KM = (01)64 (or 0x55...55 in hexadecimal) called the key modifier. In more
detail, the encryption algorithm is defined as follows:

Algorithm f8-EncryptK(COUNT, BEARER, DIRECTION,M)
m ← d|M |/64e
Y [0] ← 064

A ← COUNT‖BEARER‖DIRECTION‖026

A ← KASUMIK⊕KM(A)
For i = 1 to m do:

X[i] ← A⊕ [i− 1]64 ⊕ Y [i− 1]
Y [i] ← KASUMIK(X[i])

C ← M ⊕ (the leftmost |M | bits of Y [1]‖ · · · ‖Y [m])
Return C

In the above description, [i− 1]64 denotes the 64-bit binary representation of i− 1. The decryption
algorithm, which takes COUNT, BEARER, DIRECTION, and a ciphertext C as input and returns
a plaintext M , is defined in the natural way.

1The original specification [1] refers f8 as a symmetric synchronous stream cipher. The specification presented
here is fully compatible with the original one.

3

Since we analyze and prove results about a variant of f8 whose encryption algorithm takes a
nonce as input in lieu of COUNT, BEARER, and DIRECTION, we do not describe the specifics of
how COUNT, BEARER, and DIRECTION are used in real 3GPP applications. We do note that
3GPP applications will never invoke the f8 encryption algorithm twice with the same (COUNT,
BEARER,DIRECTION) triple, which means that our nonce-based variant is appropriate.

3.2 A Generalized Version of f8: f8′

f8′ is a nonce-based deterministic symmetric encryption scheme, which is a generalized (and weak-
ened) version of f8. It uses a block cipher E : {0, 1}k×{0, 1}n → {0, 1}n as the underlying primitive.
Let f8′[E,∆] be f8′, where E is used as the underlying primitive and ∆ is a non-zero k-bit key
modifier. The f8′ key generation algorithm returns a random k-bit key K. The f8′[E, ∆] encryp-
tion algorithm, which we call f8′-Encrypt, takes an n-bit nonce N instead of COUNT, BEARER
and DIRECTION. That is, the encryption algorithm takes a k-bit key K, an n-bit nonce N , and a
message M ∈ {0, 1}∗ to return a ciphertext C, which is the same length as M . Then the encryption
algorithm proceeds as follows:

Algorithm f8′-EncryptK(N, M)
m ← d|M |/ne
Y [0] ← 0n

A ← N
A ← EK⊕∆(A)
For i = 1 to m do:

X[i] ← A⊕ [i− 1]n ⊕ Y [i− 1]
Y [i] ← EK(X[i])

C ← M ⊕ (the leftmost |M | bits of Y [1]‖ · · · ‖Y [m])
Return C

In the above description, [i− 1]n denotes n-bit binary representation of i− 1. Decryption is done
in an obvious way.

Notice that we treat COUNT, BEARER and DIRECTION as a nonce. That is, as we will define
in Section 4, we allow the adversary to choose these values. Consequently, f8′ can be considered a
weakened version of f8 since it gives the an adversary the ability to control the entire initial value
of A, rather than only a subset of the bits as would be the case for an adversary attacking f8.

3.3 3GPP Integrity Algorithm f9 [1]

f9 is a message authentication code standardized by 3GPP. It uses KASUMI as the underlying
primitive. The f9 key generation algorithm returns a random 128-bit key K. The f9 tagging
algorithm takes a 128-bit key K, a 32-bit counter COUNT, a 32-bit random number FRESH, a
1-bit direction identifier DIRECTION, and a message M ∈ {0, 1}∗ and returns a 32-bit tag T . It
uses a 128-bit constant KM = (10)64 (or 0xAA...AA in hexadecimal), called the key modifier.

Let M = M [1]‖ · · · ‖M [m] be a message, where each M [i] (1 ≤ i ≤ m− 1) is 64 bits. The last
block M [m] may have fewer than 64 bits. We define pad64(COUNT, FRESH,DIRECTION,M) as
follows: It concatenates COUNT, FRESH, M and DIRECTION, and then appends a single “1”
bit, followed by between 0 and 63 “0” bits so that the total length is a multiple of 64 bits. More
precisely,

pad64(COUNT,FRESH, DIRECTION,M)
= COUNT‖FRESH‖M‖DIRECTION‖1‖063−(|M |+1 mod 64) .

4

Then the tagging algorithm is defined as follows:

Algorithm f9-TagK(COUNT,FRESH, DIRECTION,M)
M ← pad64(COUNT, FRESH, DIRECTION, M)
Break M into 64-bit blocks M [1]‖ · · · ‖M [m]
Y [0] ← 064

For i = 1 to m do:
X[i] ← M [i]⊕ Y [i− 1]
Y [i] ← KASUMIK(X[i])

T ← KASUMIK⊕KM(Y [1]⊕ · · · ⊕ Y [m])
T ← the leftmost 32 bits of T
Return T

The f9 verification algorithm is defined in the natural way.
As with f8, since we analyze and prove the security of a generalized version of f9, we do not

describe how COUNT, FRESH, and DIRECTION are used in real 3GPP applications.

3.4 A Generalized Version of f9: f9′ [12, 19, 15]

The message authentication code f9′ is a generalized (and weakened) version of f9 that gives the
user (or adversary) almost complete control over the input the underlying CBC MAC core. It uses
a block cipher E : {0, 1}k × {0, 1}n → {0, 1}n as the underlying primitive. Let f9′[E, ∆, l] be f9′,
where E is used as the underlying block cipher, ∆ is a non-zero k-bit key modifier, and the tag
length is l, where 1 ≤ l ≤ n. The key generation algorithm returns a random k-bit key K. The
tagging algorithm, which we call f9′-Tag, takes a k-bit key K and a message M ∈ {0, 1}∗ as input
and returns an l-bit tag T .

Let M = M [1]‖ · · · ‖M [m] be a message, where each M [i] (1 ≤ i ≤ m − 1) is n bits. The last
block M [m] may have fewer than n bits. In f9′, we use pad′n instead of pad64. pad′n(M) works as
follows: It simply appends a single “1” bit, followed by between 0 and n − 1 “0” bits so that the
total length is a multiple of n bits. More precisely,

pad′n(M) = M‖1‖0n−1−(|M | mod n) .

Thus, we simply ignore COUNT, FRESH, and DIRECTION. Equivalently, we consider COUNT,
FRESH, and DIRECTION as a part of the message. The rest of the tagging algorithm is the same
as with f9. In pseudocode,

Algorithm f9′-TagK(M)
M ← pad′n(M)
Break M into n-bit blocks M [1]‖ · · · ‖M [m]
Y [0] ← 0n

For i = 1 to m do:
X[i] ← M [i]⊕ Y [i− 1]
Y [i] ← EK(X[i])

T ← EK⊕∆(Y [1]⊕ · · · ⊕ Y [m])
T ← the leftmost l bits of T
Return T

The verification algorithm is defined in the natural way.
As we will define in Section 5, our adversary is allowed to choose COUNT, FRESH, and DI-

RECTION since f9′ treats them as a part of the message. In this sense, f9′ can be considered as
a weakened version of f9.

5

4 Security of f8′

Definitions. Before proving the security of f8′, we must first formally define what we mean by
a nonce-based encryption scheme, and what it means for such an encryption scheme to be secure.

Mathematically, a nonce-based symmetric encryption scheme SE = (K, E ,D) consists of three
algorithms and is defined for some nonce length n. The randomized key generation algorithm K
takes no input and returns a random key K. The stateless and deterministic encryption algorithm
takes a key K, an nonce N ∈ {0, 1}n, and a message M ∈ {0, 1}∗ as input and returns a ciphertext
C such that |C| = |M |; we write C ← EK(N, M). The stateless and deterministic decryption
algorithm takes a key K, a nonce N ∈ {0, 1}n, and a ciphertext C ∈ {0, 1}∗ as input and returns
a message M such that |M | = |C|; we write M ← DK(N, C). For consistency, we require that for
all keys K, nonces N , and messages M , DK(N, EK(N, M)) = M .

We adopt the strong notion of privacy for nonce-based encryption schemes from [22]. This
notion, which we call indistinguishability from random strings, provably implies the more standard
notions given in [3]. Let $(·, ·) denote an oracle that on input a pair of strings (N, M) returns a
random string of length |M |. If A is an adversary with access to an oracle, then

Advpriv
SE (A) def=

∣∣∣Pr(K R← K : AEK(·,·) = 1)− Pr(A$(·,·) = 1)
∣∣∣

is defined as the PRIV-advantage of A in distinguishing the outputs of the encryption algorithm
with a randomly selected key from random strings. We say that A is nonce-respecting if it never
queries its oracle twice with the same nonce value. Intuitively, we say that an encryption scheme
preserves privacy under chosen-plaintext attacks if the PRIV-advantage of all nonce-respecting
adversaries A using reasonable resources is small.

Provable Security Results. Let p8′[n] be a variant of f8′ that uses random functions on n-bits
instead of EK and EK⊕∆. Specifically, the key generation algorithm for p8′[n] returns two randomly
selected functions R1, R2 from Rand(n, n). The encryption algorithm for p8′[n], p8′-Encrypt, takes
R1 and R2 as “keys” and uses them instead of EK and EK⊕∆. The decryption algorithm is defined
in the natural way.

We first upper-bound the advantage of an adversary in breaking the privacy of p8′[n]. Let
(Ni, Mi) denote a privacy adversary’s i-th oracle query. If the adversary makes exactly q oracle
queries, then we define the total number of blocks for the adversary’s queries as σ =

∑q
i=1d|Mi|/ne.

Lemma 4.1 Let p8′[n] be as described above and let A be a nonce-respecting privacy adversary
which asks at most q queries totaling at most σ blocks. Then

Advpriv
p8′[n](A) ≤ σ2

2n
. (1)

A proof is given in Appendix A.
We now present our main result for f8′ (Theorem 4.1 below). At a high level, our theorem

shows that if a block cipher E is secure against Φ-restricted related key attacks, where Φ is a small
subset of Φ⊕k , then the construction f8′[E,∆] based on E will be a provably secure encryption
scheme. In more detail, our theorem states that given any adversary A attacking the privacy
of f8′[E, ∆] and making at most q oracle queries totaling at most σ blocks, we can construct a
Φ-restricted PRP-RKA adversary B attacking E such that B uses similar resources as A and B
has advantage Advprp-rka

Φ,E (B) ≥ Advpriv
f8′[E,∆](A) − (3σ2 + q2)/2n+1. If we assume that E is secure

against Φ-restricted related-key attacks and that A (and therefore B) uses reasonable resources,

6

then Advprp-rka
Φ,E (B) must be small by definition, and thus Advpriv

f8′[E,∆](A) must also be small. This
means that under these assumptions on E, f8′[E, ∆] is provably secure.

Since many block ciphers, including AES and KASUMI, are believed to resist Φ⊕k -restricted
related-key attacks, and since Φ is a small subset of Φ⊕k , this theorem means that f8′ constructions
built from these block ciphers will be provably secure. Additionally, because Φ is a small subset
of Φ⊕k , the f8′ construction actually requires a much weaker assumption on the underlying block
cipher than resistance to the full class of Φ⊕k -restricted related-key attacks, meaning that it is more
likely for the underlying block cipher to resist Φ-restricted related-key attacks than Φ⊕k -restricted
related-key attacks. Of course, our results also suggest that if a block cipher is known to be insecure
under Φ-restricted related-key attacks, that block cipher should not be used in the f8′ construction.

Since f8′ is a weakened version of the KASUMI-based f8 encryption scheme, and since KASUMI
is currently believed to resist Φ⊕k -restricted related-key attacks, our result shows that f8 as designed
for use in the 3GPP protocols is secure.

Our main theorem statement for f8′ is given below.

Theorem 4.1 (Main Theorem for f8′) Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher
and let ∆ be a non-zero k-bit constant. Let f8′[E,∆] be as described in Sec. 3.2. Let id be the
identity function on {0, 1}k and let Φ = {id, XOR∆} ⊆ Φ⊕k be a set of RKD functions over {0, 1}k.
If A is a nonce-respecting privacy adversary which asks at most q queries totaling at most σ blocks,
then we can construct a Φ-restricted PRP-RKA adversary B against E such that

Advpriv
f8′[E,∆](A) ≤ 3σ2 + q2

2n+1
+ Advprp-rka

Φ,E (B) . (2)

Furthermore, B makes at most σ + q oracle queries and uses the same time as A.

Proof . Let f8′-Encrypt denote the encryption algorithm for f8′[E,∆] and let p8′-Encrypt denote the
encryption algorithm for p8′[n]. Expanding the definition of Advpriv

f8′[E,∆](A), we get:

Advpriv
f8′[E,∆](A) =

∣∣∣ Pr(K R← {0, 1}k : Af8′-EncryptK(·,·) = 1)− Pr(A$(·,·) = 1)
∣∣∣

=
∣∣∣ Pr(K R← {0, 1}k : Af8′-EncryptK(·,·) = 1)

− Pr(R1, R2
R← Rand(n, n) : Ap8′-EncryptR1,R2

(·,·) = 1)

+ Pr(R1, R2
R← Rand(n, n) : Ap8′-EncryptR1,R2

(·,·) = 1)− Pr(A$(·,·) = 1)
∣∣∣

≤
∣∣∣ Pr(K R← {0, 1}k : Af8′-EncryptK(·,·) = 1)

− Pr(R1, R2
R← Rand(n, n) : Ap8′-EncryptR1,R2

(·,·) = 1)
∣∣∣ + Advpriv

p8′[n](A) .

Applying Lemma 4.1 we get

Advpriv
f8′[E,∆](A) ≤

∣∣∣Pr(K R← {0, 1}k : Af8′-EncryptK(·,·) = 1)

− Pr(R1, R2
R← Rand(n, n) : Ap8′-EncryptR1,R2

(·,·) = 1)
∣∣∣ +

σ2

2n
.

Let B be a Φ-restricted related-key adversary against E that runs A and that returns the
same bit that A returns. Let Frk(·,K)(·) denote B’s related-key oracle. When A makes an oracle
query (N, M) to its oracle, B essentially computes the f8′-Encrypt algorithm, except that it uses its
related-key oracle in place of EK and EK⊕∆. In pseudocode,

7

Algorithm BFrk(·,K)(·)

Run A, replying to A’s oracle queries (N, M) as follows:
m ← d|M |/ne
Y [0] ← 0n

A ← N
A ← Frk(XOR∆,K)(A)
For i = 1 to m do:

X[i] ← A⊕ [i− 1]n ⊕ Y [i− 1]
Y [i] ← Frk(id,K)(X[i])

C ← M ⊕ (the leftmost |M | bits of Y [1]‖ · · · ‖Y [m])
Return C to A

When A outputs b:
output b

We now observe that

Pr(K R← {0, 1}k : Af8′-EncryptK(·,·) = 1) = Pr(K R← {0, 1}k : BErk(·,K)(·) = 1)

since B, when given related-key oracle access to E with a randomly selected key K, responds to A
exactly as the f8′-EncryptK(·, ·) oracle would respond with a randomly selected key K.

Let Rand(k, n, n) denote the set of all functions from {0, 1}k × {0, 1}n to {0, 1}n. Then the
equation

Pr(R1, R2
R← Rand(n, n) : Ap8′-EncryptR1,R2

(·,·) = 1)

= Pr(K R← {0, 1}k ; G
R← Rand(k, n, n) : BGrk(·,K)(·) = 1)

follows from the fact that when G is randomly selected from Rand(k, n, n), regardless of the key K
and since we assume ∆ 6= 0k, GK and GK⊕∆ are both randomly selected functions from Rand(n, n).

Combining the above equations, we have that

Advpriv
f8′[E,∆](A) ≤

∣∣∣Pr(K R← {0, 1}k : BErk(·,K)(·) = 1)

− Pr(K R← {0, 1}k ; G
R← Rand(k, n, n) : BGrk(·,K)(·) = 1)

∣∣∣ +
σ2

2n

=
∣∣∣Pr(K R← {0, 1}k : BErk(·,K)(·) = 1)

− Pr(K R← {0, 1}k ; H
R← Perm(k, n) : BHrk(·,K)(·) = 1)

+ Pr(K R← {0, 1}k ; H
R← Perm(k, n) : BHrk(·,K)(·) = 1)

− Pr(K R← {0, 1}k ; G
R← Rand(k, n, n) : BGrk(·,K)(·) = 1)

∣∣∣ +
σ2

2n
.

Using the PRP-RKA definition and applying a variant of the PRF/PRP switching lemma from [5],
we get

Advpriv
f8′[E,∆](A) ≤ Advprp-rka

Φ,E (B) +
σ(σ − 1)

2n+1
+

q(q − 1)
2n+1

+
σ2

2n
.

For the application of the PRF/PRP switching lemma, we note that B queries its related-key
oracle with the RKD function id at most σ times and the RKD function XOR∆ at most q times.
Rearranging the above equation and simplifying gives (2), as desired. Q.E.D.

8

5 Security of f9′

Definitions. Before proving the security of f9′, we must first formally define what we mean by
a MAC, and what it means for a MAC to be secure.

Mathematically, a message authentication scheme or MAC MA = (K, T ,V) consists of three
algorithms and is defined for some tag length l. The randomized key generation algorithm K takes
no input and returns a random key K. The stateless and deterministic tagging algorithm takes a
key K and a message M ∈ {0, 1}∗ as input and returns a tag T ∈ {0, 1}l; we write T ← TK(M).
The stateless and deterministic verification algorithm takes a key K, a message M ∈ {0, 1}∗, and
a candidate tag T ∈ {0, 1}l as input and returns a bit b; we write b ← VK(M,T). For consistency,
we require that for all keys K and messages M , VK(M, TK(M)) = 1.

For security, we adopt a strong notion of security for MACs, namely pseudorandomness (PRF).
In [4] it was proven that if a MAC is secure PRF, then it is also unforgeable. If A is an adversary
with access to an oracle, then

Advprf
MA(A) def=

∣∣∣Pr(K R← K : ATK(·) = 1)− Pr(g R← Rand(∗, l) : Ag(·) = 1)
∣∣∣

is defined as the PRF-advantage of A in distinguishing the outputs of the tagging algorithm with
a randomly selected key from the outputs of a random function with the same domain and range.
Intuitively, we say that a message authentication code is pseudorandom or secure if the PRF-
advantage of all adversaries A using reasonable resources is small.

Provable Security Results. Let p9′[n] be a variant of f9′ that always outputs a full n-bit tag
and that uses random functions on n-bits instead of EK and EK⊕∆. Specifically, the key generation
algorithm for p9′[n] returns two randomly selected functions R1, R2 from Rand(n, n). The tagging
algorithm for p9′[n], p9′-Tag, takes R1 and R2 as “keys” and uses them instead of EK and EK⊕∆.
The verification algorithm is defined in the natural way.

We first upper-bound the advantage of an adversary in attacking the pseudorandomness of
p9′[n]. Let Mi denote an adversary’s i-th oracle query. If an adversary makes exactly q oracle
queries, then we define the total number of blocks for the adversary’s queries as σ =

∑q
i=1d|Mi|/ne.

Lemma 5.1 Let p9′[n] be as described above and let A be an adversary which asks at most q queries
totaling at most σ blocks. Then

Advprf
p9′[n](A) ≤ σ2 + q2

2n+1
. (3)

A proof is given in Appendix B.
We now present our main result for f9′ (Theorem 5.1), which we interpret as follows: our

theorem shows that if a block cipher E is secure against Φ-restricted related-key attacks, where
Φ is a small subset of Φ⊕k , then the construction f9′[E,∆, l] based on E will be a provably se-
cure message authentication code. In more detail, we show that given any adversary A attacking
f9′[E, ∆, l] and making at most q oracle queries totaling at most σ blocks, we can construct a
Φ-restricted PRP-RKA adversary B against E such that B uses similar resources as A and B has
advantage Advprp-rka

Φ,E (B) ≥ Advprf
f9′[E,∆,l](A)−(3q2+2σ2+2σq)/2n+1. If we assume that E is secure

against Φ-restricted related-key attacks and that A (and therefore B) uses reasonable resources,
then Advprp-rka

Φ,E (B) must be small by definition. Therefore Advprf
f9′[E,∆,l](A) must be small as well,

proving that under these assumptions on E, f9′[E, ∆, l] is secure.
Since many block ciphers, including AES and KASUMI, are believed to resist Φ⊕k -restricted

related-key attacks, and since Φ is a small subset of Φ⊕k , this theorem means that f9′ constructions

9

built from these block ciphers will be provably secure. Furthermore, because f9′ is a weakened
version of the KASUMI-based f9 message authentication code, our result shows that f9 as designed
for use in the 3GPP protocols is secure.

The precise theorem statement is as follows:

Theorem 5.1 (Main Theorem for f9′) Let E : {0, 1}k×{0, 1}n → {0, 1}n be a block cipher, let
∆ be a non-zero k-bit constant, and let l, 1 ≤ l ≤ n, be a constant. Let f9′[E, ∆, l] be as described
in Sec. 3.4. Let id be the identity function on {0, 1}k and let Φ = {id, XOR∆} ⊆ Φ⊕k be a set of
RKD functions over {0, 1}k. If A is a PRF adversary which asks at most q queries totaling at most
σ blocks, then we can construct a Φ-restricted PRP-RKA adversary B against E such that

Advprf
f9′[E,∆,l](A) ≤ 3q2 + 2σ2 + 2σq

2n+1
+ Advprp-rka

Φ,E (B) . (4)

Furthermore, B makes at most σ + 2q oracle queries and uses the same time as A.

Proof . We first note that given any PRF adversary A against f9′[E, ∆, l], we can construct a PRF
adversary C against f9′[E, ∆, n] such that the following equation holds

Advprf
f9′[E,∆,l](A) ≤ Advprf

f9′[E,∆,n](C) . (5)

This standard result follows from the fact that the extra bits provided to the adversary can only
improve its chance of success.

Our approach to upper-bounding Advprf
f9′[E,∆,n](C) is similar to the approach we used to upper-

bound Advpriv
f8′[E,∆](A) in the proof of Theorem 5.1. Let f9′-Tag denote the tagging algorithm for

f9′[E, ∆, n] and let p9′-Tag denote the tagging algorithm for p9′[n]. Expanding the definition of
Advprf

f9′[E,∆,n](C) and applying Lemma 5.1, we get:

Advprf
f9′[E,∆,n](C) =

∣∣∣Pr(K R← {0, 1}k : Cf9′-TagK(·) = 1)− Pr(g R← Rand(∗, n) : Cg(·) = 1)
∣∣∣

=
∣∣∣Pr(K R← {0, 1}k : Cf9′-TagK(·) = 1)

− Pr(R1, R2
R← Rand(n, n) : Cp9′-TagR1,R2

(·) = 1)

+ Pr(R1, R2
R← Rand(n, n) : Cp9′-TagR1,R2

(·) = 1)

− Pr(g R← Rand(∗, n) : Cg(·) = 1)
∣∣∣

≤
∣∣∣Pr(K R← {0, 1}k : Cf9′-TagK(·) = 1)

− Pr(R1, R2
R← Rand(n, n) : Cp9′-TagR1,R2

(·) = 1)
∣∣∣ +

σ2 + q2

2n+1
.

As with the proof of Lemma 5.1, let B be a Φ-restricted related-key adversary against E that
runs C and that returns the same bit that C returns. Let Frk(·,K)(·) denote B’s related-key oracle.
This time, when C makes an oracle query (N,M) to its oracle, B essentially computes the f9′-Tag
algorithm, except that it uses its related-key oracle in place of EK and EK⊕∆. In pseudocode,

10

Algorithm BFrk(·,K)(·)

Run C, replying to C’s oracle queries M as follows:
M ← pad′n(M)
Break M into n-bit blocks M [1]‖ · · · ‖M [m]
Y [0] ← 0n

For i = 1 to m do:
X[i] ← M [i]⊕ Y [i− 1]
Y [i] ← Frk(id,K)(X[i])

T ← Frk(XOR∆,K)(Y [1]⊕ · · · ⊕ Y [m])
Return T to C

When C outputs b:
output b

We first observe that when B is given related-key oracle access to E with key K, it replies to
C’s oracle queries exactly as f9′-TagK(·) does. This means that the following equation holds:

Pr(K R← {0, 1}k : Cf9′-TagK(·) = 1) = Pr(K R← {0, 1}k : BErk(·,K)(·) = 1) .

We also observe that when B is given related-key oracle access to G with key K, where G is
a randomly selected function family from Rand(k, n, n), the functions GK(·) and GK⊕∆(·) are
both randomly selected from Rand(n, n). This means that B replies to C’s oracle queries exactly as
p9′-TagR1,R2

(·) would with two randomly selected functions R1, R2 from Rand(n, n). Consequently,
the following equation holds:

Pr(R1, R2
R← Rand(n, n) : Cp9′-TagR1,R2

(·) = 1)

= Pr(K R← {0, 1}k ; G
R← Rand(k, n, n) : BGrk(·,K)(·) = 1)

Combining these equations, we have that

Advprf
f9′[E,∆,n](C) ≤

∣∣∣Pr(K R← {0, 1}k : BErk(·,K)(·) = 1)

− Pr(K R← {0, 1}k ; H
R← Perm(k, n) : BHrk(·,K)(·) = 1)

+ Pr(K R← {0, 1}k ; H
R← Perm(k, n) : BHrk(·,K)(·) = 1)

− Pr(K R← {0, 1}k ; G
R← Rand(k, n, n) : BGrk(·,K)(·) = 1)

∣∣∣ +
σ2 + q2

2n+1
.

Applying the PRP-RKA definition and a variant of the PRF/PRP switching lemma from [5], we
get

Advprf
f9′[E,∆,n](C) ≤ Advprp-rka

Φ,E (B) +
(σ + q) · (σ + q − 1)

2n+1
+

q · (q − 1)
2n+1

+
σ2 + q2

2n+1
.

For the application of the PRF/PRP switching lemma, we note that B queries its related-key oracle
with the RKD function id at most σ + q times and the RKD function XOR∆ at most q times.
Combining the above with equation (5) and simplifying gives the theorem statement. Q.E.D.

11

References

[1] 3GPP TS 35.201 v 3.1.1. Specification of the 3GPP confidentiality and integrity algo-
rithms, Document 1: f8 and f9 specification. Available at http://www.3gpp.org/tb/other/
algorithms.htm.

[2] 3GPP TS 35.202 v 3.1.1. Specification of the 3GPP confidentiality and integrity algo-
rithms, Document 2: KASUMI specification. Available at http://www.3gpp.org/tb/other/
algorithms.htm.

[3] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric
encryption. Proceedings of The 38th Annual Symposium on Foundations of Computer Science,
FOCS ’97, pp. 394–405, IEEE, 1997.

[4] M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chaining message
authentication code. JCSS, vol. 61, no. 3, pp. 362–399, 2000. Earlier version in Y. Desmedt,
editor, Advances in Cryptology – CRYPTO ’94, volume 839 of Lecture Notes in Computer
Science, pages 341–358. Springer-Verlag, Berlin Germany, 1994.

[5] M. Bellare, and T. Kohno. A theoretical treatment of related-key attacks: RKA-PRPs, RKA-
PRFs, and applications. In E. Biham, editor, Advances in Cryptology – EUROCRYPT 2003,
volume 2656 of Lecture Notes in Computer Science, pages 491–506. Springer-Verlag, Berlin
Germany, 2003.

[6] M. Bellare, P. Rogaway, and D. Wagner. The EAX mode of operation. In W. Meier and
B. Roy, editors, Fast Software Encryption, FSE 2004, Springer-Verlag, 2004.

[7] E. Biham. New types of cryptanalytic attacks using related keys. In T. Helleseth, editor, Ad-
vances in Cryptology – EUROCRYPT ’93, volume 765 of Lecture Notes in Computer Science,
pages 398–409. Springer-Verlag, Berlin Germany, 1993.

[8] J. Black and P. Rogaway. A block-cipher mode of operation for parallelizable message authen-
tication. In L.R. Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002, volume 2332
of Lecture Notes in Computer Science, pages 384–397. Springer-Verlag, Berlin Germany, 2002.

[9] M. Blunden and A. Escott. Related key attacks on reduced round KASUMI. In M. Mat-
sui, editor, Fast Software Encryption, FSE 2001, volume 2355 of Lecture Notes in Computer
Science, pages 277–285. Springer-Verlag, Berlin Germany, 2002.

[10] J. Daemen and V. Rijmen. The Design of Rijndael. Springer-Verlag, Berlin Germany, 2002.

[11] Evaluation report (version 2.0). Specification of the 3GPP confidentiality and integrity algo-
rithms, Report on the evaluation of 3GPP confidentiality and integrity algorithms. Available
at http://www.3gpp.org/tb/other/algorithms.htm.

[12] D. Hong, J-S. Kang, B. Preneel and H. Ryu. A concrete security analysis for 3GPP-MAC. In
T. Johansson, editor, Fast Software Encryption, FSE 2003, volume 2887 of Lecture Notes in
Computer Science, pages 154–169. Springer-Verlag, Berlin Germany, 2003.

[13] T. Iwata and T. Kohno. New security proofs for the 3GPP confidentiality and integrity
algorithms. In W. Meier and B. Roy, editors, Fast Software Encryption, FSE 2004, Springer-
Verlag, 2004.

12

[14] T. Iwata and K. Kurosawa. OMAC: One-Key CBC MAC. In T. Johansson, editor, Fast
Software Encryption, FSE 2003, volume 2887 of Lecture Notes in Computer Science, pages
129–153. Springer-Verlag, Berlin Germany, 2003.

[15] T. Iwata and K. Kurosawa. On the correctness of security proofs for the 3GPP confidentiality
and integrity algorithms. In K.G. Paterson, editor, Cryptography and Coding, Ninth IMA
International Conference, volume 2898 of Lecture Notes in Computer Science, pages 306–318.
Springer-Verlag, Berlin Germany, 2003.

[16] J. Jonsson. On the Security of CTR + CBC-MAC. In K. Nyberg and H.M. Heys, editors,
Selected Areas in Cryptography, 9th Annual Workshop (SAC 2002), volume 2595 of Lecture
Notes in Computer Science, pages 76–93. Springer-Verlag, Berlin Germany, 2002.

[17] C.S. Jutla. Encryption modes with almost free message integrity. In B. Pfitzmann, editor,
Advances in Cryptology – EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer
Science, pages 529–544. Springer-Verlag, Berlin Germany, 2001.

[18] J-S. Kang, S-U. Shin, D. Hong and O. Yi. Provable security of KASUMI and 3GPP encryption
mode f8. In C. Boyd, editor, Advances in Cryptology – ASIACRYPT 2001, volume 2248 of
Lecture Notes in Computer Science, pages 255–271. Springer-Verlag, Berlin Germany, 2001.

[19] L.R. Knudsen and C.J. Mitchell. Analysis of 3gpp-MAC and two-key 3gpp-MAC. Discrete
Applied Mathematics, vol. 128, no. 1, pp. 181–191, 2003.

[20] T. Kohno, J. Viega, and D. Whiting. CWC: A high-performance conventional authenticated
encryption mode. In W. Meier and B. Roy, editors, Fast Software Encryption, FSE 2004,
Springer-Verlag, 2004.

[21] M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudorandom
functions. SIAM J. Comput., vol. 17, no. 2, pp. 373–386, April 1988.

[22] P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: a block-cipher mode of operation
for efficient authenticated encryption. Proceedings of ACM Conference on Computer and
Communications Security, ACM CCS 2001, ACM, 2001.

[23] D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC (CCM). Submission to
NIST. Available at http://csrc.nist.gov/CryptoToolkit/modes/.

A Proof of Lemma 4.1

Notation. We fix some notation. For q and σ in Lemma 4.1, let m1, . . . , mq be integers such
that mi ≥ 1 and σ ≥ m1 + · · · + mq. Let N1, . . . , Nq be fixed and distinct bit strings such
that |Ni| = n. Let M1, . . . , Mq be arbitrarily fixed bit strings such that |Mi| = min, and let
Mi = Mi[1]‖ · · · ‖Mi[mi], where Mi[j] ∈ {0, 1}n. Also, let C1, . . . , Cq be fixed bit strings such that
|Ci| = min and, let Ci = Ci[1]‖ · · · ‖Ci[mi], where Ci[j] ∈ {0, 1}n. Assume C1, . . . , Cq satisfy the
following condition:

For any i (1 ≤ i ≤ q),
0n,Mi[1]⊕ Ci[1]⊕ [1]n, . . . ,Mi[mi − 1]⊕ Ci[mi − 1]⊕ [mi − 1]n are distinct.

(6)

(there is no condition on C1[m1], . . . , Cq[mq]).

13

For (Ni,Mi) and functions R1 and R2, let Ai = R1(Ni), and Mi[0]⊕Ci[0] = 0n. For 1 ≤ j ≤ mi,
let Xi[j] = Ai ⊕Mi[j − 1]⊕ Ci[j − 1]⊕ [j − 1]n and Yi[j] = R2(Xi[j]).

Further, for 1 ≤ i ≤ q, let Xi
def= {Xi[j] | 1 ≤ j ≤ mi} and Yi

def= {Yi[j] | 1 ≤ j ≤ mi}.
We first show the following lemma.

Lemma A.1 Let q, m1, . . . , mq, σ, N1, . . . , Nq, M1, . . . , Mq, C1, . . . , Cq be as described above.
Then

Pr(R1, R2
R← Rand(n, n) : 1 ≤ ∀i ≤ q, p8′-EncryptR1,R2

(Ni,Mi) = Ci) ≥ 1
2σn

·
(

1− σ2

2n+1

)
. (7)

Proof . As usual, instead of choosing R1 and R2 uniformly at random, we choose Ai and Yi[j] in
an incremental manner. We first choose A1, . . . , Aq, and then we choose Y1[1], . . . , Y1[m1], and we
choose Y2[1], . . . , Y2[m2], and so on.

We define the following q events BAD[t] (1 ≤ t ≤ q): Suppose that A1, . . . , At−1 are fixed (thus
X1, . . . , Xt−1 are fixed) and none of BAD[1], . . . , BAD[t− 1] occurs. For randomly chosen At (this
will fix Xt), define the following (t− 1) conditions: Cond. A-s (1 ≤ s ≤ t− 1).

Cond. A-s (1 ≤ s ≤ t− 1): Xs ∩Xt 6= ∅.
We say that BAD[t] occurs if at least one of the above (t− 1) conditions occurs.

Intuitively, Cond. A-s (1 ≤ s ≤ t) ensure that currently fixed Xt is different from all the
previously fixed X1, . . . ,Xt−1. Notice that, from the condition on Ci in (6), there is no collision
among the elements in Xt. For any At, Xt has mt distinct elements.

We upper bound the probability of BAD[t] (1 ≤ t ≤ q). Now we see that

Pr
At

(Cond. A-s) ≤ ms ·mt

2n
,

since there are exactly ms elements in Xs and exactly mt elements in Xt, and these elements collide
with probability 2−n because of the randomness of At. Therefore,

Pr
At

(BAD[t]) ≤
∑

1≤s≤t−1

ms ·mt

2n
=

(m1 + · · ·+ mt−1) ·mt

2n
.

Now the left hand side of (7) is lower bounded by

Pr
A1,...,Aq

(none of BAD[1], . . . , BAD[q] occurs) · 1
2σn

(8)

since, if none of BAD[t] occurs, then X1 ∪ · · · ∪ Xq has σ distinct elements, and thus R2 has σ
distinct inputs. Then, (8) is lower bounded by

1
2σn

·

1−

∑

1≤t≤q

Pr
At

(BAD[t])

 ≥ 1

2σn
·

1−

∑

1≤t≤q

(m1 + · · ·+ mt−1) ·mt

2n

 .

Finally, we have

∑

1≤t≤q

(m1 + · · ·+ mt−1) ·mt

2n
=

(m1 + · · ·+ mq)2

2n+1
− m2

1 + · · ·+ m2
q

2n+1
≤ σ2

2n+1
,

14

and the lemma follows. Q.E.D.

We now prove Lemma 4.1.

Proof (of Lemma 4.1). Let O(·, ·) be either p8′-EncryptR1,R2
(·, ·) or $(·, ·). The adversary A has

oracle access to O(·, ·). Since A is computationally unbounded, there is no loss of generality to
assume that A is deterministic. Also, there is no loss of generality to assume that A makes q
queries, and the length of each queries is a multiple of n bits.

For the i-th query A makes to O(·, ·), define the query-answer pair (Ni,Mi, Ci), where A’s query
was (Ni,Mi) and the answer it got was Ci.

Suppose that we run A with the oracle O(·, ·). For this run, we define view v of A as

v
def= 〈C1, . . . , Cq〉 . (9)

Since A is deterministic, the i-th query A makes is fully determined by the first i− 1 query-answer
pairs. This implies that if we fix some σn-bit string V and return the i-th mi blocks as the answer
for the i-th query A makes (instead of the oracle), then

• A’s queries (N1,M1), . . . , (Nq,Mq) are uniquely determined,

• the unique parsing of V into the format defined in (9) is determined, and

• the final output of A (0 or 1) is uniquely determined.

We note that since A is nonce-respecting, the corresponding N1, . . . , Nq are distinct.

Let Vone be a set of all σn-bit strings V such that A outputs 1, and let None
def= #Vone. Also,

let Vgood be a set of all σn-bit strings V such that the corresponding parsing satisfies (6), and let

Ngood
def= #Vgood.

For notational simplicity, define

prand
def= Pr(A$(·,·) = 1) .

Then we have

prand =
∑

V ∈Vone

Pr(1 ≤ ∀i ≤ q, $(Ni,Mi) = Ci) =
∑

V ∈Vone

1
2σn

=
None

2σn
. (10)

Next define
preal

def= Pr(R1, R2
R← Rand(n, n) : Ap8′-EncryptR1,R2

(·,·) = 1) .

Then from Lemma A.1, we have

preal =
∑

V ∈Vone

Pr(R1, R2
R← Rand(n, n) : 1 ≤ ∀i ≤ q, p8′-EncryptR1,R2

(Ni,Mi) = Ci)

≥
∑

V ∈(Vone∩Vgood)

Pr(R1, R2
R← Rand(n, n) : 1 ≤ ∀i ≤ q, p8′-EncryptR1,R2

(Ni,Mi) = Ci)

≥
∑

V ∈(Vone∩Vgood)

1
2σn

·
(

1− σ2

2n+1

)
. (11)

We next count Ngood. Suppose that the message of A’s first query (N1,M1) has m1 blocks. Then
the first n bits of V can take any value except for M1[1]⊕ [1]n, the second n bits of V can take any

15

value except for M1[2] ⊕ [2]n and M1[1] ⊕ [1]n ⊕M1[2] ⊕ [2]n, the third n bits of V can take any
value except for M1[3] ⊕ [3]n, M1[2] ⊕ [2]n ⊕M1[3] ⊕ [3]n, M1[1] ⊕ [1]n ⊕M1[3] ⊕ [3]n, and so on.
In particular, at most j values are not allowed for the j-th block (1 ≤ j ≤ m1 − 1), and the m1-th
block can take any value. That is, the first m1 blocks of V can take at least

(2n − 1) · (2n − 2) · · · (2n −m1 − 1) · (2n) ≥ 2m1n

(
1− m2

1

2n+1

)

values. When we choose one of the above 2m1n
(
1− m2

1
2n+1

)
values, then m2 is determined, and we

have at least 2m2n
(
1− m2

2
2n+1

)
values for the next m2 blocks of V . By continuing the same analysis

up to q-th mq blocks, Ngood is at least

2(m1+···+mq)n ·
(

1− m2
1

2n+1

)
· · ·

(
1− m2

q

2n+1

)
· 2(σ−(m1+···+mq))n ≥ 2σn ·

(
1− σ2

2n+1

)
.

2(σ−(m1+···+mq))n is multiplied since, in case of σ > m1+· · ·+mq, the remaining (σ−(m1+· · ·+mq))
bits can take any value. Then we have #{V | V ∈ (Vone ∩ Vgood)} ≥ None − 2σn · σ2

2n+1 , and (11) is
lower bounded by

(
None − 2σn · σ2

2n+1

)
· 1
2σn

·
(

1− σ2

2n+1

)
=

(
None

2σn
− σ2

2n+1

)
·
(

1− σ2

2n+1

)
.

From (10) we have

preal ≥
(

prand − σ2

2n+1

)
·
(

1− σ2

2n+1

)
≥ prand − σ2

2n
. (12)

Applying the same argument to 1− preal and 1− prand yields that

1− preal ≥ 1− prand − σ2

2n
. (13)

Finally, (12) and (13) give |preal − prand| ≤ σ2/2n. Q.E.D.

A.1 Discussion of the Previous Work [18]

[18, p. 269, Lemma 7] might be seen to correspond to Lemma 4.1. However, there is a problem
with the definition of their encryption scheme. Their encryption scheme, which we call p8′′[n], is
described as follows: The key generation algorithm for p8′′[n] returns a randomly selected permu-
tation P1 from Perm(n). The encryption algorithm for p8′′[n] takes P1 as a “key” and uses P1 and
P2 instead of EK and EK⊕∆, but it is not defined how P2 is derive from P1. We note that [12,
p. 166, Lemma 2] has a similar problem, which is described in Appendix B.1.

We also adopt the strong notion of privacy, indistinguishability from random strings [22]. This
security notion is strictly stronger than the left-or-right indistinguishability used in [18, p. 269,
Lemma 7].

We present the full security proof for p8′[n] in order to achieve this strong security notion and
to establish self contained security proof.

16

B Proof of Lemma 5.1

To prove Lemma 5.1, we define p9′-E[n], a variant of p9′[n]. The tagging algorithm for p9′-E[n] takes
only messages of length multiple of n, and it does not perform the final encryption. Specifically,
the key generation algorithm for p9′-E[n] returns a randomly selected function R1 from Rand(n, n).
The tagging algorithm for p9′-E[n], p9′-E-Tag, takes R1 as a “key” and a message M such that
|M | = mn for some m ≥ 1. In pseudocode:

Algorithm p9′-E-TagR1
(M)

Break M into n-bit blocks M [1]‖ · · · ‖M [m]
Y [0] ← 0n

For i = 1 to m do:
X[i] ← M [i]⊕ Y [i− 1]
Y [i] ← R1(X[i])

Return Y [1]⊕ · · · ⊕ Y [m]

The verification algorithm is defined in the natural way.

Notation. We fix some notation. For q and σ in Lemma 5.1, let m1, . . . , mq be integers such
that mi ≥ 1 and σ ≥ m1 + · · · + mq. Let M1, . . . ,Mq be fixed and distinct bit strings such that
|Mi| = min. Also, let mmax = max{m1, . . . , mq}. Further, let Mi = Mi[1], . . . , Mi[mi], where
Mi[j] ∈ {0, 1}n. Then for M1, . . . ,Mq, we define the following sequences S[1], . . . , S[mmax] and
S′[1], . . . , S′[mmax] of integers:

{
S[j] def= #{(Mi[1], . . . , Mi[j]) | 1 ≤ i ≤ q and j ≤ mi} , and

S′[j] def= #{i | 1 ≤ i ≤ q and j = mi} .

Note that S[1] + · · ·+ S[mmax] ≤ σ and S′[1] + · · ·+ S′[mmax] = q.
Let Yi[0] be 0n. For a function R1 and for j ≥ 1, let Xi[j] = Mi[j]⊕Yi[j−1] and Yi[j] = R1(Xi[j]).

See Fig. 1. Note that p9′-E-TagR1
(Mi) = Yi[1]⊕ · · · ⊕ Yi[mi].

Mi[1]

?
Xi[1]

?
R1

?
Yi[1]

¡¡

¡
¡¡

¡
¡¡

¡¡
-

Mi[2]
?f
?

Xi[2]
?

R1

?
Yi[2]

¡¡

¡
¡

···
¡¡

¡¡
-

Mi[j]
?f
?

Xi[j]
?

R1

?
Yi[j]

¡¡

¡
¡¡

¡
¡¡

¡¡
-

Mi[j + 1]
?f
?

Xi[j + 1]
?

R1

?
Yi[j + 1]

¡¡

¡
¡

···

Fig. 1. The labeling convention for p9′-E-TagR1
(Mi).

Further, for 1 ≤ j ≤ mmax, let X[j] def= {Xi[j] | 1 ≤ i ≤ q and j ≤ mi}, Y [j] def= {Yi[j] |
1 ≤ i ≤ q and j ≤ mi}, and Z[j] def= {Yi[1]⊕ · · · ⊕ Yi[j] | 1 ≤ i ≤ q and j = mi}.

We first show the following lemma.

Lemma B.1 Let q, m1, . . . , mq, σ, M1, . . . , Mq be as described above. Then

Pr(R1
R← Rand(n, n) : 1 ≤ ∃i < ∃j ≤ q, p9′-E-TagR1

(Mi) = p9′-E-TagR1
(Mj)) ≤ σ2 + q2

2n+1
. (14)

17

Proof . As usual, instead of choosing R1 uniformly at random, we choose Yi[j] in an incremental
manner. We first choose Y1[1], Y2[1], . . . , Yq[1], and we choose Y1[2], Y2[2], . . . , Yq[2], and so on.

We define the following mmax events BAD[t] (1 ≤ t ≤ mmax): Suppose that Y [1], . . . ,Y [t − 1]
are fixed (thus X[1], . . . ,X[t] and Z[1], . . . ,Z[t−1] are fixed), and none of BAD[1], . . . ,BAD[t−1]
occurs. For randomly chosen Y [t] (this will fix X[t + 1] and Z[t]), define the following t + 1 +
(t − 1) + 1 = 2t + 1 conditions: Cond. A-s (1 ≤ s ≤ t), Cond. B, Cond. C-s (1 ≤ s ≤ t − 1), and
Cond. D.

Cond. A-s (1 ≤ s ≤ t): X[s] ∩X[t + 1] 6= ∅.
Cond. B: There exists (i, i′) (1 ≤ i < i′ ≤ q) such that

(Mi[1], . . . ,Mi[t + 1]) 6= (Mi′ [1], . . . , Mi′ [t + 1])

and
Yi[t]⊕Mi[t + 1] = Yi′ [t]⊕Mi′ [t + 1] .

Cond. C-s (1 ≤ s ≤ t− 1): Z[s] ∩Z[t] 6= ∅.
Cond. D: There exists (i, i′) (1 ≤ i < i′ ≤ q) such that

(Mi[1], . . . , Mi[t]) 6= (Mi′ [1], . . . , Mi′ [t])

and
Yi[1]⊕ · · · ⊕ Yi[t] = Yi′ [1]⊕ · · · ⊕ Yi′ [t] ,

where mi = mi′ = t.

We say that BAD[t] occurs if at least one of the above 2t + 1 conditions occurs.
Intuitively, Cond. A-s (1 ≤ s ≤ t) ensure that we can randomly choose the next Y [t + 1]

independent of the previously fixed Y [1], . . . , Y [t], and Cond. B ensures that #X[t+1] = S[t+1].
Similarly, Cond. C-s (1 ≤ s ≤ t−1) ensure that the currently fixed Yi[1]⊕· · ·⊕Yi[t] (where t = mi)
is different from the previously fixed Yi′ [1]⊕ · · ·⊕Yi′ [mi′], and Cond. D ensures that #Z[t] = S′[t].

We note that, BAD[1] and BAD[mmax] are slightly different from BAD[2], . . . ,BAD[mmax − 1]:
we do not have to consider Cond. C-s in BAD[1], and we do not have to consider Cond. A-s and
Cond. B in BAD[mmax]. Also, note that #Z[t] = S[t] for all 1 ≤ t ≤ mmax and Z[s] ∩ Z[t] = ∅ for
all 1 ≤ s < t ≤ mmax imply p9′-E-TagR1

(Mi) 6= p9′-E-TagR1
(Mj) for all 1 ≤ i < j ≤ q.

We upper bound the probability of BAD[t] (1 ≤ t ≤ mmax). Since none of BAD[1], . . . ,BAD[t−1]
occurs, we have (2n)S[t] choice of Y1[t], . . . , Yq[t].

Now we see that
Pr

Y1[t],...,Yq [t]
(Cond. A-s) ≤ S[s] · S[t + 1]

2n
,

since there are exactly S[s] elements in X[s] and at most S[t + 1] elements in X[t + 1], and these
elements collide with probability at most 2−n because of the randomness of Y1[t], . . . , Yq[t]. Next
we have

Pr
Y1[t],...,Yq [t]

(Cond. B) ≤ S[t + 1] · (S[t + 1]− 1)
2n+1

≤ S[t + 1]2

2n+1
,

since we have
(
S[t+1]

2

)
choice of (i, i′). Next, we see that

Pr
Y1[t],...,Yq [t]

(Cond. C-s) ≤ S′[s] · S′[t]
2n

,

18

since there are exactly S′[s] elements in Z[s] and at most S′[t] elements in Z[t]. Then we have

Pr
Y1[t],...,Yq [t]

(Cond. D) ≤ S′[t] · (S′[t]− 1)
2n+1

≤ S′[t]2

2n+1
,

since we have
(
S[t]
2

)
choice of (i, i′). Therefore,

Pr
Y1[t],...,Yq [t]

(BAD[t]) ≤ (S[1] + · · ·+ S[t]) · S[t + 1]
2n

+
S[t + 1]2

2n+1

+
(S′[1] + · · ·+ S′[t− 1]) · S′[t]

2n
+

S′[t]2

2n+1
.

Now the left hand side of (14) is upper bounded by
∑

1≤t≤mmax

Pr
Y1[t],...,Yq [t]

(BAD[t]) (15)

since, if none of BAD[t] occurs, then we do not have a collision. Finally, we have

∑

1≤t≤mmax

2 · (S[1] + · · ·+ S[t]) · S[t + 1] + S[t + 1]2

2n+1
≤ (S[1] + · · ·+ S[mmax])

2

2n+1

and ∑

1≤t≤mmax

2 · (S′[1] + · · ·+ S′[t− 1]) · S′[t] + S′[t]2

2n+1
=

(S′[1] + · · ·+ S′[mmax])
2

2n+1
.

Therefore, (15) is upper bounded by (σ2 + q2)/2n+1. Q.E.D.

Next we have the following lemma.

Lemma B.2 Let q, m1, . . . , mq, σ, M1, . . . , Mq be as in Lemma B.1. Also, let T1, . . . , Tq be arbi-
trarily fixed n-bit strings. Then

Pr(R1, R2
R← Rand(n, n) : 1 ≤ ∀i ≤ q, p9′-TagR1,R2

(Mi) = Ti) ≥ 1
2qn

(
1− σ2 + q2

2n+1

)
. (16)

Proof . The left hand side of (16) is at least

Pr(R1
R← Rand(n, n) : 1 ≤ ∀i < ∀j ≤ q, p9′-E-TagR1

(Mi) 6= p9′-E-TagR1
(Mj)) · 1

2qn
,

since, if there is no collision among the outputs of p9′-E-TagR1
(·), then R2 has q distinct inputs.

From Lemma B.1, the lemma follows. Q.E.D.

We now prove Lemma 5.1.

Proof (of Lemma 5.1). Let O(·) be either p9′-TagR1,R2
(·) or g(·). The adversary A has oracle access

to O(·). Since A is computationally unbounded, there is no loss of generality to assume that A is
deterministic. Also, there is no loss of generality to assume that A makes q queries.

For the i-th query A makes to O(·), define the query-answer pair (Mi, Ti), where A’s query was
Mi and the answer it got was Ti.

19

Suppose that we run A with the oracle O(·). For this run, we define view v of A as

v
def= 〈T1, . . . , Tq〉 . (17)

Since A is deterministic, the i-th query A makes is fully determined by the first i− 1 query-answer
pairs. This implies that if we fix some qn-bit string V and return the i-th n-bit block as the answer
for the i-th query A makes (instead of the oracle), then

• A’s queries (M1, . . . , Mq) are uniquely determined, and

• the final output of A (0 or 1) is uniquely determined.

We note that since A never repeats a query, M1, . . . , Mq are distinct.

Let Vone be a set of all qn-bit strings V such that A outputs 1, and let None
def= #Vone.

Define
prand

def= Pr(g R← Rand(∗, n) : Ag(·) = 1) .

Then we have

prand =
∑

V ∈Vone

Pr(g R← Rand(∗, n) : 1 ≤ ∀i ≤ q, g(Mi) = Ti) =
∑

V ∈Vone

1
2qn

=
None

2qn
. (18)

Next let
preal

def= Pr(R1, R2
R← Rand(n, n) : Ap9′-TagR1,R2

(·) = 1) .

Then from Lemma B.2, we have

preal =
∑

V ∈Vone

Pr(R1, R2
R← Rand(n, n) : 1 ≤ ∀i ≤ q, p9′-TagR1,R2

(Mi) = Ti)

≥
∑

V ∈Vone

(
1− σ2 + q2

2n+1

)
· 1
2qn

=
None

2qn

(
1− σ2 + q2

2n+1

)
.

From (18) we have

preal ≥ prand

(
1− σ2 + q2

2n+1

)
≥ prand − σ2 + q2

2n+1
. (19)

Applying the same argument to 1− preal and 1− prand yields that

1− preal ≥ 1− prand − σ2 + q2

2n+1
. (20)

Finally, (19) and (20) give |preal − prand| ≤ (σ2 + q2)/2n+1. Q.E.D.

20

B.1 Discussion of the Previous Work [12]

[12, p. 162, Lemma 1] corresponds to our Lemma 5.1. Then one might wonder if the relevant
portion can be re-used. However, in the proof of [12, p. 162, Lemma 1], there is a flaw in the
analysis of Game 5. We use our notation. Let q = 2 in Lemma B.1. Then [12, p. 166] says

Pr(R1
R← Rand(n, n) : p9′-E-TagR1

(M1) = p9′-E-TagR1
(M2)) =

1
2n

,

since Y1[1] is a random string in {0, 1}n, where Y1[1] = R1(M1[1]). However, if M1[1] = M2[1], then
we have Y1[1] = Y2[1], where Y2[1] = R1(M2[1]), and their randomness disappears. This part needs
to be fixed, which is done in Lemma B.1.

Also, [12, p. 166, Lemma 2] doesn’t hold. There is a problem with the definition of their MAC.
Their MAC, which we call p9′′[n], is described as follows: the key generation algorithm for p9′′[n]
returns a randomly selected permutation P1 from Perm(n). The tagging algorithm for p9′′[n] takes
P1 as a “key” and uses P1 and P2 instead of EK and EK⊕∆, and outputs a full n-bit tag, where
P2 ∈ Perm(n) \ {P1} is determined from P1 by some means. The verification algorithm is defined
in the natural way. Then [12, p. 159] says the security of p9′′[n] does not depend on how P2 is
derived from P1, which is not correct. For example if P2 is chosen as P2 = P−1

1 , then it is easy to
make a forgery.

We present the full security proof for p9′[n] in order to avoid presenting proof covered with
patches, and to establish self contained security proof.

21

